File:  [DragonFly] / src / sys / dev / disk / ata / atapi-cd.c
Revision 1.17: download - view: text, annotated - select for diffs
Wed May 19 22:52:40 2004 UTC (10 years, 7 months ago) by dillon
Branches: MAIN
CVS tags: HEAD, DragonFly_1_0_RC1
Device layer rollup commit.

* cdevsw_add() is now required.  cdevsw_add() and cdevsw_remove() may specify
  a mask/match indicating the range of supported minor numbers.  Multiple
  cdevsw_add()'s using the same major number, but distinctly different
  ranges, may be issued.  All devices that failed to call cdevsw_add() before
  now do.

* cdevsw_remove() now automatically marks all devices within its supported
  range as being destroyed.

* vnode->v_rdev is no longer resolved when the vnode is created.  Instead,
  only v_udev (a newly added field) is resolved.  v_rdev is resolved when
  the vnode is opened and cleared on the last close.

* A great deal of code was making rather dubious assumptions with regards
  to the validity of devices associated with vnodes, primarily due to
  the persistence of a device structure due to being indexed by (major, minor)
  instead of by (cdevsw, major, minor).  In particular, if you run a program
  which connects to a USB device and then you pull the USB device and plug
  it back in, the vnode subsystem will continue to believe that the device
  is open when, in fact, it isn't (because it was destroyed and recreated).

  In particular, note that all the VFS mount procedures now check devices
  via v_udev instead of v_rdev prior to calling VOP_OPEN(), since v_rdev
  is NULL prior to the first open.

* The disk layer's device interaction has been rewritten.  The disk layer
  (i.e. the slice and disklabel management layer) no longer overloads
  its data onto the device structure representing the underlying physical
  disk.  Instead, the disk layer uses the new cdevsw_add() functionality
  to register its own cdevsw using the underlying device's major number,
  and simply does NOT register the underlying device's cdevsw.  No
  confusion is created because the device hash is now based on
  (cdevsw,major,minor) rather then (major,minor).

  NOTE: This also means that underlying raw disk devices may use the entire
  device minor number instead of having to reserve the bits used by the disk
  layer, and also means that can we (theoretically) stack a fully
  disklabel-supported 'disk' on top of any block device.

* The new reference counting scheme prevents this by associating a device
  with a cdevsw and disconnecting the device from its cdevsw when the cdevsw
  is removed.  Additionally, all udev2dev() lookups run through the cdevsw
  mask/match and only successfully find devices still associated with an
  active cdevsw.

* Major work on MFS:  MFS no longer shortcuts vnode and device creation.  It
  now creates a real vnode and a real device and implements real open and
  close VOPs.  Additionally, due to the disk layer changes, MFS is no longer
  limited to 255 mounts.  The new limit is 16 million.  Since MFS creates a
  real device node, mount_mfs will now create a real /dev/mfs<PID> device
  that can be read from userland (e.g. so you can dump an MFS filesystem).

* BUF AND DEVICE STRATEGY changes.  The struct buf contains a b_dev field.
  In order to properly handle stacked devices we now require that the b_dev
  field be initialized before the device strategy routine is called.  This
  required some additional work in various VFS implementations.  To enforce
  this requirement, biodone() now sets b_dev to NODEV.  The new disk layer
  will adjust b_dev before forwarding a request to the actual physical
  device.

* A bug in the ISO CD boot sequence which resulted in a panic has been fixed.

Testing by: lots of people, but David Rhodus found the most aggregious bugs.

/*-
 * Copyright (c) 1998,1999,2000,2001,2002 Søren Schmidt <sos@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer,
 *    without modification, immediately at the beginning of the file.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD: src/sys/dev/ata/atapi-cd.c,v 1.48.2.20 2002/11/25 05:30:31 njl Exp $
 * $DragonFly: src/sys/dev/disk/ata/atapi-cd.c,v 1.17 2004/05/19 22:52:40 dillon Exp $
 */

#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/disklabel.h>
#include <sys/devicestat.h>
#include <sys/cdio.h>
#include <sys/cdrio.h>
#include <sys/dvdio.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/ctype.h>
#include <machine/bus.h>
#include <sys/buf2.h>
#include "ata-all.h"
#include "atapi-all.h"
#include "atapi-cd.h"

/* device structures */
static d_open_t		acdopen;
static d_close_t	acdclose;
static d_ioctl_t	acdioctl;
static d_strategy_t	acdstrategy;

static struct cdevsw acd_cdevsw = {
	/* name */	"acd",
	/* maj */	117,
	/* flags */	D_DISK | D_TRACKCLOSE,
	/* port */      NULL,
	/* clone */	NULL,

	/* open */	acdopen,
	/* close */	acdclose,
	/* read */	physread,
	/* write */	physwrite,
	/* ioctl */	acdioctl,
	/* poll */	nopoll,
	/* mmap */	nommap,
	/* strategy */	acdstrategy,
	/* dump */	nodump,
	/* psize */	nopsize
};

/* prototypes */
static struct acd_softc *acd_init_lun(struct ata_device *);
static void acd_make_dev(struct acd_softc *);
static void acd_set_ioparm(struct acd_softc *);
static void acd_describe(struct acd_softc *);
static void lba2msf(u_int32_t, u_int8_t *, u_int8_t *, u_int8_t *);
static u_int32_t msf2lba(u_int8_t, u_int8_t, u_int8_t);
static int acd_done(struct atapi_request *);
static void acd_read_toc(struct acd_softc *);
static int acd_play(struct acd_softc *, int, int);
static int acd_setchan(struct acd_softc *, u_int8_t, u_int8_t, u_int8_t, u_int8_t);
static void acd_select_slot(struct acd_softc *);
static int acd_init_writer(struct acd_softc *, int);
static int acd_fixate(struct acd_softc *, int);
static int acd_init_track(struct acd_softc *, struct cdr_track *);
static int acd_flush(struct acd_softc *);
static int acd_read_track_info(struct acd_softc *, int32_t, struct acd_track_info *);
static int acd_get_progress(struct acd_softc *, int *);
static int acd_send_cue(struct acd_softc *, struct cdr_cuesheet *);
static int acd_report_key(struct acd_softc *, struct dvd_authinfo *);
static int acd_send_key(struct acd_softc *, struct dvd_authinfo *);
static int acd_read_structure(struct acd_softc *, struct dvd_struct *);
static int acd_eject(struct acd_softc *, int);
static int acd_blank(struct acd_softc *, int);
static int acd_prevent_allow(struct acd_softc *, int);
static int acd_start_stop(struct acd_softc *, int);
static int acd_pause_resume(struct acd_softc *, int);
static int acd_mode_sense(struct acd_softc *, int, caddr_t, int);
static int acd_mode_select(struct acd_softc *, caddr_t, int);
static int acd_set_speed(struct acd_softc *, int, int);
static void acd_get_cap(struct acd_softc *);

/* internal vars */
static u_int32_t acd_lun_map = 0;
static MALLOC_DEFINE(M_ACD, "ACD driver", "ATAPI CD driver buffers");

int
acdattach(struct ata_device *atadev)
{
    struct acd_softc *cdp;
    struct changer *chp;

    if ((cdp = acd_init_lun(atadev)) == NULL) {
	ata_prtdev(atadev, "acd: out of memory\n");
	return 0;
    }

    ata_set_name(atadev, "acd", cdp->lun);
    acd_get_cap(cdp);

    /* if this is a changer device, allocate the neeeded lun's */
    if (cdp->cap.mech == MST_MECH_CHANGER) {
	int8_t ccb[16] = { ATAPI_MECH_STATUS, 0, 0, 0, 0, 0, 0, 0, 
			   sizeof(struct changer)>>8, sizeof(struct changer),
			   0, 0, 0, 0, 0, 0 };

	chp = malloc(sizeof(struct changer), M_ACD, M_WAITOK | M_ZERO);
	if (!atapi_queue_cmd(cdp->device, ccb, (caddr_t)chp, 
			     sizeof(struct changer),
			     ATPR_F_READ, 60, NULL, NULL)) {
	    struct acd_softc *tmpcdp = cdp;
	    struct acd_softc **cdparr;
	    char *name;
	    int count;

	    chp->table_length = htons(chp->table_length);
	    cdparr = malloc(sizeof(struct acd_softc) * chp->slots,
				  M_ACD, M_WAITOK);
	    for (count = 0; count < chp->slots; count++) {
		if (count > 0) {
		    tmpcdp = acd_init_lun(atadev);
		    if (!tmpcdp) {
			ata_prtdev(atadev, "out of memory\n");
			break;
		    }
		}
		cdparr[count] = tmpcdp;
		tmpcdp->driver = cdparr;
		tmpcdp->slot = count;
		tmpcdp->changer_info = chp;
		acd_make_dev(tmpcdp);
		devstat_add_entry(tmpcdp->stats, "acd", tmpcdp->lun, DEV_BSIZE,
				  DEVSTAT_NO_ORDERED_TAGS,
				  DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE,
				  DEVSTAT_PRIORITY_CD);
	    }
	    name = malloc(strlen(atadev->name) + 2, M_ACD, M_WAITOK);
	    strcpy(name, atadev->name);
	    strcat(name, "-");
	    ata_free_name(atadev);
	    ata_set_name(atadev, name, cdp->lun + cdp->changer_info->slots - 1);
	    free(name, M_ACD);
	}
    }
    else {
	acd_make_dev(cdp);
	devstat_add_entry(cdp->stats, "acd", cdp->lun, DEV_BSIZE,
			  DEVSTAT_NO_ORDERED_TAGS,
			  DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE,
			  DEVSTAT_PRIORITY_CD);
    }
    acd_describe(cdp);
    atadev->driver = cdp;
    return 1;
}

void
acddetach(struct ata_device *atadev)
{   
    struct acd_softc *cdp = atadev->driver;
    struct acd_devlist *entry;
    struct buf *bp;
    int subdev;
    
    if (cdp->changer_info) {
	for (subdev = 0; subdev < cdp->changer_info->slots; subdev++) {
	    if (cdp->driver[subdev] == cdp)
		continue;
	    while ((bp = bufq_first(&cdp->driver[subdev]->queue))) {
		bufq_remove(&cdp->driver[subdev]->queue, bp);
		bp->b_flags |= B_ERROR;
		bp->b_error = ENXIO;
		biodone(bp);
	    }
	    release_dev(cdp->driver[subdev]->dev);
	    while ((entry = TAILQ_FIRST(&cdp->driver[subdev]->dev_list))) {
		release_dev(entry->dev);
		TAILQ_REMOVE(&cdp->driver[subdev]->dev_list, entry, chain);
		free(entry, M_ACD);
	    }
	    devstat_remove_entry(cdp->driver[subdev]->stats);
	    free(cdp->driver[subdev]->stats, M_ACD);
	    ata_free_lun(&acd_lun_map, cdp->driver[subdev]->lun);
	    free(cdp->driver[subdev], M_ACD);
	}
	free(cdp->driver, M_ACD);
	free(cdp->changer_info, M_ACD);
    }
    while ((bp = bufq_first(&cdp->queue))) {
	bp->b_flags |= B_ERROR;
	bp->b_error = ENXIO;
	biodone(bp);
    }
    while ((entry = TAILQ_FIRST(&cdp->dev_list))) {
	release_dev(entry->dev);
	TAILQ_REMOVE(&cdp->dev_list, entry, chain);
	free(entry, M_ACD);
    }
    release_dev(cdp->dev);
    devstat_remove_entry(cdp->stats);
    cdevsw_remove(&acd_cdevsw, dkunitmask(), dkmakeunit(cdp->lun));
    free(cdp->stats, M_ACD);
    ata_free_name(atadev);
    ata_free_lun(&acd_lun_map, cdp->lun);
    free(cdp, M_ACD);
    atadev->driver = NULL;
}

static struct acd_softc *
acd_init_lun(struct ata_device *atadev)
{
    struct acd_softc *cdp;

    cdp = malloc(sizeof(struct acd_softc), M_ACD, M_WAITOK | M_ZERO);
    TAILQ_INIT(&cdp->dev_list);
    bufq_init(&cdp->queue);
    cdp->device = atadev;
    cdp->lun = ata_get_lun(&acd_lun_map);
    cdp->block_size = 2048;
    cdp->slot = -1;
    cdp->changer_info = NULL;
    cdp->stats = malloc(sizeof(struct devstat), M_ACD, M_WAITOK | M_ZERO);
    return cdp;
}

static void
acd_make_dev(struct acd_softc *cdp)
{
    dev_t dev;

    cdevsw_add(&acd_cdevsw, dkunitmask(), dkmakeunit(cdp->lun));
    dev = make_dev(&acd_cdevsw, dkmakeminor(cdp->lun, 0, 0),
		   UID_ROOT, GID_OPERATOR, 0644, "acd%d", cdp->lun);
    reference_dev(dev);
    dev->si_drv1 = cdp;
    cdp->dev = dev;
    cdp->device->flags |= ATA_D_MEDIA_CHANGED;
    acd_set_ioparm(cdp);
}

static void
acd_set_ioparm(struct acd_softc *cdp)
{
     cdp->dev->si_iosize_max = ((256*DEV_BSIZE)/cdp->block_size)*cdp->block_size;
     cdp->dev->si_bsize_phys = cdp->block_size;
}

static void 
acd_describe(struct acd_softc *cdp)
{
    int comma = 0;
    char *mechanism;

    if (bootverbose) {
	ata_prtdev(cdp->device, "<%.40s/%.8s> %s drive at ata%d as %s\n",
		   cdp->device->param->model, cdp->device->param->revision,
		   (cdp->cap.write_dvdr) ? "DVD-R" : 
		    (cdp->cap.write_dvdram) ? "DVD-RAM" : 
		     (cdp->cap.write_cdrw) ? "CD-RW" :
		      (cdp->cap.write_cdr) ? "CD-R" : 
		       (cdp->cap.read_dvdrom) ? "DVD-ROM" : "CDROM",
		   device_get_unit(cdp->device->channel->dev),
		   (cdp->device->unit == ATA_MASTER) ? "master" : "slave");

	ata_prtdev(cdp->device, "%s", "");
	if (cdp->cap.cur_read_speed) {
	    printf("read %dKB/s", cdp->cap.cur_read_speed * 1000 / 1024);
	    if (cdp->cap.max_read_speed) 
		printf(" (%dKB/s)", cdp->cap.max_read_speed * 1000 / 1024);
	    if ((cdp->cap.cur_write_speed) &&
		(cdp->cap.write_cdr || cdp->cap.write_cdrw || 
		 cdp->cap.write_dvdr || cdp->cap.write_dvdram)) {
		printf(" write %dKB/s", cdp->cap.cur_write_speed * 1000 / 1024);
		if (cdp->cap.max_write_speed)
		    printf(" (%dKB/s)", cdp->cap.max_write_speed * 1000 / 1024);
	    }
	    comma = 1;
	}
	if (cdp->cap.buf_size) {
	    printf("%s %dKB buffer", comma ? "," : "", cdp->cap.buf_size);
	    comma = 1;
	}
	printf("%s %s\n", comma ? "," : "", ata_mode2str(cdp->device->mode));

	ata_prtdev(cdp->device, "Reads:");
	comma = 0;
	if (cdp->cap.read_cdr) {
	    printf(" CD-R"); comma = 1;
	}
	if (cdp->cap.read_cdrw) {
	    printf("%s CD-RW", comma ? "," : ""); comma = 1;
	}
	if (cdp->cap.cd_da) {
	    if (cdp->cap.cd_da_stream)
		printf("%s CD-DA stream", comma ? "," : "");
	    else
		printf("%s CD-DA", comma ? "," : "");
	    comma = 1;
	}
	if (cdp->cap.read_dvdrom) {
	    printf("%s DVD-ROM", comma ? "," : ""); comma = 1;
	}
	if (cdp->cap.read_dvdr) {
	    printf("%s DVD-R", comma ? "," : ""); comma = 1;
	}
	if (cdp->cap.read_dvdram) {
	    printf("%s DVD-RAM", comma ? "," : ""); comma = 1;
	}
	if (cdp->cap.read_packet)
	    printf("%s packet", comma ? "," : "");

	printf("\n");
	ata_prtdev(cdp->device, "Writes:");
	if (cdp->cap.write_cdr || cdp->cap.write_cdrw || 
	    cdp->cap.write_dvdr || cdp->cap.write_dvdram) {
	    comma = 0;
	    if (cdp->cap.write_cdr) {
		printf(" CD-R" ); comma = 1;
	    }
	    if (cdp->cap.write_cdrw) {
		printf("%s CD-RW", comma ? "," : ""); comma = 1;
	    }
	    if (cdp->cap.write_dvdr) {
		printf("%s DVD-R", comma ? "," : ""); comma = 1;
	    }
	    if (cdp->cap.write_dvdram) {
		printf("%s DVD-RAM", comma ? "," : ""); comma = 1; 
	    }
	    if (cdp->cap.test_write) {
		printf("%s test write", comma ? "," : ""); comma = 1;
	    }
	    if (cdp->cap.burnproof)
		printf("%s burnproof", comma ? "," : "");
	}
	printf("\n");
	if (cdp->cap.audio_play) {
	    ata_prtdev(cdp->device, "Audio: ");
	    if (cdp->cap.audio_play)
		printf("play");
	    if (cdp->cap.max_vol_levels)
		printf(", %d volume levels", cdp->cap.max_vol_levels);
	    printf("\n");
	}
	ata_prtdev(cdp->device, "Mechanism: ");
	switch (cdp->cap.mech) {
	case MST_MECH_CADDY:
	    mechanism = "caddy"; break;
	case MST_MECH_TRAY:
	    mechanism = "tray"; break;
	case MST_MECH_POPUP:
	    mechanism = "popup"; break;
	case MST_MECH_CHANGER:
	    mechanism = "changer"; break;
	case MST_MECH_CARTRIDGE:
	    mechanism = "cartridge"; break;
	default:
	    mechanism = 0; break;
	}
	if (mechanism)
	    printf("%s%s", cdp->cap.eject ? "ejectable " : "", mechanism);
	else if (cdp->cap.eject)
	    printf("ejectable");

	if (cdp->cap.lock)
	    printf(cdp->cap.locked ? ", locked" : ", unlocked");
	if (cdp->cap.prevent)
	    printf(", lock protected");
	printf("\n");

	if (cdp->cap.mech != MST_MECH_CHANGER) {
	    ata_prtdev(cdp->device, "Medium: ");
	    switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) {
	    case MST_CDROM:
		printf("CD-ROM "); break;
	    case MST_CDR:
		printf("CD-R "); break;
	    case MST_CDRW:
		printf("CD-RW "); break;
	    case MST_DOOR_OPEN:
		printf("door open"); break;
	    case MST_NO_DISC:
		printf("no/blank disc"); break;
	    case MST_FMT_ERROR:
		printf("medium format error"); break;
	    }
	    if ((cdp->cap.medium_type & MST_TYPE_MASK_HIGH)<MST_TYPE_MASK_HIGH){
		switch (cdp->cap.medium_type & MST_TYPE_MASK_LOW) {
		case MST_DATA_120:
		    printf("120mm data disc"); break;
		case MST_AUDIO_120:
		    printf("120mm audio disc"); break;
		case MST_COMB_120:
		    printf("120mm data/audio disc"); break;
		case MST_PHOTO_120:
		    printf("120mm photo disc"); break;
		case MST_DATA_80:
		    printf("80mm data disc"); break;
		case MST_AUDIO_80:
		    printf("80mm audio disc"); break;
		case MST_COMB_80:
		    printf("80mm data/audio disc"); break;
		case MST_PHOTO_80:
		    printf("80mm photo disc"); break;
		case MST_FMT_NONE:
		    switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) {
		    case MST_CDROM:
			printf("unknown"); break;
		    case MST_CDR:
		    case MST_CDRW:
			printf("blank"); break;
		    }
		    break;
		default:
		    printf("unknown (0x%x)", cdp->cap.medium_type); break;
		}
	    }
	    printf("\n");
	}
    }
    else {
	ata_prtdev(cdp->device, "%s ",
		   (cdp->cap.write_dvdr) ? "DVD-R" : 
		    (cdp->cap.write_dvdram) ? "DVD-RAM" : 
		     (cdp->cap.write_cdrw) ? "CD-RW" :
		      (cdp->cap.write_cdr) ? "CD-R" : 
		       (cdp->cap.read_dvdrom) ? "DVD-ROM" : "CDROM");

	if (cdp->changer_info)
	    printf("with %d CD changer ", cdp->changer_info->slots);

	printf("<%.40s> at ata%d-%s %s\n", cdp->device->param->model,
	       device_get_unit(cdp->device->channel->dev),
	       (cdp->device->unit == ATA_MASTER) ? "master" : "slave",
	       ata_mode2str(cdp->device->mode) );
    }
}

static __inline void 
lba2msf(u_int32_t lba, u_int8_t *m, u_int8_t *s, u_int8_t *f)
{
    lba += 150;
    lba &= 0xffffff;
    *m = lba / (60 * 75);
    lba %= (60 * 75);
    *s = lba / 75;
    *f = lba % 75;
}

static __inline u_int32_t 
msf2lba(u_int8_t m, u_int8_t s, u_int8_t f)
{
    return (m * 60 + s) * 75 + f - 150;
}

static int
acdopen(dev_t dev, int flags, int fmt, struct thread *td)
{
    struct acd_softc *cdp = dev->si_drv1;
    int timeout = 60;
    
    if (!cdp)
	return ENXIO;

    if (flags & FWRITE) {
	if (count_dev(dev) > 1)
	    return EBUSY;
    }

    /* wait if drive is not finished loading the medium */
    while (timeout--) {
	struct atapi_reqsense *sense = cdp->device->result;

	if (!atapi_test_ready(cdp->device))
	    break;
	if (sense->sense_key == 2  && sense->asc == 4 && sense->ascq == 1)
	    tsleep(&timeout, 0, "acdld", hz / 2);
	else
	    break;
    }

    if (count_dev(dev) == 1) {
	if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
	    acd_select_slot(cdp);
	    tsleep(&cdp->changer_info, 0, "acdopn", 0);
	}
	acd_prevent_allow(cdp, 1);
	cdp->flags |= F_LOCKED;
	acd_read_toc(cdp);
    }
    return 0;
}

static int 
acdclose(dev_t dev, int flags, int fmt, struct thread *td)
{
    struct acd_softc *cdp = dev->si_drv1;
    
    if (!cdp)
	return ENXIO;

    if (count_dev(dev) == 1) {
	if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
	    acd_select_slot(cdp);
	    tsleep(&cdp->changer_info, 0, "acdclo", 0);
	}
	acd_prevent_allow(cdp, 0);
	cdp->flags &= ~F_LOCKED;
    }
    return 0;
}

static int 
acdioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct thread *td)
{
    struct acd_softc *cdp = dev->si_drv1;
    int error = 0;

    if (!cdp)
	return ENXIO;

    if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
	acd_select_slot(cdp);
	tsleep(&cdp->changer_info, 0, "acdctl", 0);
    }
    if (cdp->device->flags & ATA_D_MEDIA_CHANGED)
	switch (cmd) {
	case CDIOCRESET:
	    atapi_test_ready(cdp->device);
	    break;
	   
	default:
	    acd_read_toc(cdp);
	    acd_prevent_allow(cdp, 1);
	    cdp->flags |= F_LOCKED;
	    break;
	}
    switch (cmd) {

    case CDIOCRESUME:
	error = acd_pause_resume(cdp, 1);
	break;

    case CDIOCPAUSE:
	error = acd_pause_resume(cdp, 0);
	break;

    case CDIOCSTART:
	error = acd_start_stop(cdp, 1);
	break;

    case CDIOCSTOP:
	error = acd_start_stop(cdp, 0);
	break;

    case CDIOCALLOW:
	error = acd_prevent_allow(cdp, 0);
	cdp->flags &= ~F_LOCKED;
	break;

    case CDIOCPREVENT:
	error = acd_prevent_allow(cdp, 1);
	cdp->flags |= F_LOCKED;
	break;

    case CDIOCRESET:
	error = suser(td);	/* note: if no proc EPERM will be returned */
	if (error)
	    break;
	error = atapi_test_ready(cdp->device);
	break;

    case CDIOCEJECT:
	if (count_dev(dev) > 1) {
	    error = EBUSY;
	    break;
	}
	error = acd_eject(cdp, 0);
	break;

    case CDIOCCLOSE:
	if (count_dev(dev) > 1)
	    break;
	error = acd_eject(cdp, 1);
	break;

    case CDIOREADTOCHEADER:
	if (!cdp->toc.hdr.ending_track) {
	    error = EIO;
	    break;
	}
	bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr));
	break;

    case CDIOREADTOCENTRYS:
	{
	    struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr;
	    struct toc *toc = &cdp->toc;
	    int starting_track = te->starting_track;
	    int len;

	    if (!toc->hdr.ending_track) {
		error = EIO;
		break;
	    }

	    if (te->data_len < sizeof(toc->tab[0]) || 
		(te->data_len % sizeof(toc->tab[0])) != 0 || 
		(te->address_format != CD_MSF_FORMAT &&
		te->address_format != CD_LBA_FORMAT)) {
		error = EINVAL;
		break;
	    }

	    if (!starting_track)
		starting_track = toc->hdr.starting_track;
	    else if (starting_track == 170) 
		starting_track = toc->hdr.ending_track + 1;
	    else if (starting_track < toc->hdr.starting_track ||
		     starting_track > toc->hdr.ending_track + 1) {
		error = EINVAL;
		break;
	    }

	    len = ((toc->hdr.ending_track + 1 - starting_track) + 1) *
		  sizeof(toc->tab[0]);
	    if (te->data_len < len)
		len = te->data_len;
	    if (len > sizeof(toc->tab)) {
		error = EINVAL;
		break;
	    }

	    if (te->address_format == CD_MSF_FORMAT) {
		struct cd_toc_entry *entry;

		toc = malloc(sizeof(struct toc), M_ACD, M_WAITOK | M_ZERO);
		bcopy(&cdp->toc, toc, sizeof(struct toc));
		entry = toc->tab + (toc->hdr.ending_track + 1 -
			toc->hdr.starting_track) + 1;
		while (--entry >= toc->tab)
		    lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
			    &entry->addr.msf.second, &entry->addr.msf.frame);
	    }
	    error = copyout(toc->tab + starting_track - toc->hdr.starting_track,
			    te->data, len);
	    if (te->address_format == CD_MSF_FORMAT)
		free(toc, M_ACD);
	    break;
	}
    case CDIOREADTOCENTRY:
	{
	    struct ioc_read_toc_single_entry *te =
		(struct ioc_read_toc_single_entry *)addr;
	    struct toc *toc = &cdp->toc;
	    u_char track = te->track;

	    if (!toc->hdr.ending_track) {
		error = EIO;
		break;
	    }

	    if (te->address_format != CD_MSF_FORMAT && 
		te->address_format != CD_LBA_FORMAT) {
		error = EINVAL;
		break;
	    }

	    if (!track)
		track = toc->hdr.starting_track;
	    else if (track == 170)
		track = toc->hdr.ending_track + 1;
	    else if (track < toc->hdr.starting_track ||
		     track > toc->hdr.ending_track + 1) {
		error = EINVAL;
		break;
	    }

	    if (te->address_format == CD_MSF_FORMAT) {
		struct cd_toc_entry *entry;

		toc = malloc(sizeof(struct toc), M_ACD, M_WAITOK | M_ZERO);
		bcopy(&cdp->toc, toc, sizeof(struct toc));

		entry = toc->tab + (track - toc->hdr.starting_track);
		lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
			&entry->addr.msf.second, &entry->addr.msf.frame);
	    }
	    bcopy(toc->tab + track - toc->hdr.starting_track,
		  &te->entry, sizeof(struct cd_toc_entry));
	    if (te->address_format == CD_MSF_FORMAT)
		free(toc, M_ACD);
	}
	break;

    case CDIOCREADSUBCHANNEL:
	{
	    struct ioc_read_subchannel *args =
		(struct ioc_read_subchannel *)addr;
	    u_int8_t format;
	    int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0,
			       sizeof(cdp->subchan)>>8, sizeof(cdp->subchan),
			       0, 0, 0, 0, 0, 0, 0 };

	    if (args->data_len > sizeof(struct cd_sub_channel_info) ||
		args->data_len < sizeof(struct cd_sub_channel_header)) {
		error = EINVAL;
		break;
	    }

	    format=args->data_format;
	    if ((format != CD_CURRENT_POSITION) &&
		(format != CD_MEDIA_CATALOG) && (format != CD_TRACK_INFO)) {
		error = EINVAL;
		break;
	    }

	    ccb[1] = args->address_format & CD_MSF_FORMAT;

	    if ((error = atapi_queue_cmd(cdp->device,ccb,(caddr_t)&cdp->subchan,
					 sizeof(cdp->subchan), ATPR_F_READ, 10,
					 NULL, NULL)))
		break;

	    if ((format == CD_MEDIA_CATALOG) || (format == CD_TRACK_INFO)) {
		if (cdp->subchan.header.audio_status == 0x11) {
		    error = EINVAL;
		    break;
		}

		ccb[3] = format;
		if (format == CD_TRACK_INFO)
		    ccb[6] = args->track;

		if ((error = atapi_queue_cmd(cdp->device, ccb,
					     (caddr_t)&cdp->subchan, 
					     sizeof(cdp->subchan), ATPR_F_READ,
					     10, NULL, NULL))) {
		    break;
		}
	    }
	    error = copyout(&cdp->subchan, args->data, args->data_len);
	    break;
	}

    case CDIOCPLAYMSF:
	{
	    struct ioc_play_msf *args = (struct ioc_play_msf *)addr;

	    error = 
		acd_play(cdp, 
			 msf2lba(args->start_m, args->start_s, args->start_f),
			 msf2lba(args->end_m, args->end_s, args->end_f));
	    break;
	}

    case CDIOCPLAYBLOCKS:
	{
	    struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr;

	    error = acd_play(cdp, args->blk, args->blk + args->len);
	    break;
	}

    case CDIOCPLAYTRACKS:
	{
	    struct ioc_play_track *args = (struct ioc_play_track *)addr;
	    int t1, t2;

	    if (!cdp->toc.hdr.ending_track) {
		error = EIO;
		break;
	    }
	    if (args->end_track < cdp->toc.hdr.ending_track + 1)
		++args->end_track;
	    if (args->end_track > cdp->toc.hdr.ending_track + 1)
		args->end_track = cdp->toc.hdr.ending_track + 1;
	    t1 = args->start_track - cdp->toc.hdr.starting_track;
	    t2 = args->end_track - cdp->toc.hdr.starting_track;
	    if (t1 < 0 || t2 < 0 ||
		t1 > (cdp->toc.hdr.ending_track-cdp->toc.hdr.starting_track)) {
		error = EINVAL;
		break;
	    }
	    error = acd_play(cdp, ntohl(cdp->toc.tab[t1].addr.lba),
			     ntohl(cdp->toc.tab[t2].addr.lba));
	    break;
	}

    case CDIOCREADAUDIO:
	{
	    struct ioc_read_audio *args = (struct ioc_read_audio *)addr;
	    int32_t lba;
	    caddr_t buffer, ubuf = args->buffer;
	    int8_t ccb[16];
	    int frames;

	    if (!cdp->toc.hdr.ending_track) {
		error = EIO;
		break;
	    }
		
	    if ((frames = args->nframes) < 0) {
		error = EINVAL;
		break;
	    }

	    if (args->address_format == CD_LBA_FORMAT)
		lba = args->address.lba;
	    else if (args->address_format == CD_MSF_FORMAT)
		lba = msf2lba(args->address.msf.minute,
			     args->address.msf.second,
			     args->address.msf.frame);
	    else {
		error = EINVAL;
		break;
	    }

#ifndef CD_BUFFER_BLOCKS
#define CD_BUFFER_BLOCKS 13
#endif
	    if (!(buffer = malloc(CD_BUFFER_BLOCKS * 2352, M_ACD, M_WAITOK))){
		error = ENOMEM;
		break;
	    }
	    bzero(ccb, sizeof(ccb));
	    while (frames > 0) {
		int8_t blocks;
		int size;

		blocks = (frames>CD_BUFFER_BLOCKS) ? CD_BUFFER_BLOCKS : frames;
		size = blocks * 2352;

		ccb[0] = ATAPI_READ_CD;
		ccb[1] = 4;
		ccb[2] = lba>>24;
		ccb[3] = lba>>16;
		ccb[4] = lba>>8;
		ccb[5] = lba;
		ccb[8] = blocks;
		ccb[9] = 0xf0;
		if ((error = atapi_queue_cmd(cdp->device, ccb, buffer, size, 
					     ATPR_F_READ, 30, NULL,NULL)))
		    break;

		if ((error = copyout(buffer, ubuf, size)))
		    break;
		    
		ubuf += size;
		frames -= blocks;
		lba += blocks;
	    }
	    free(buffer, M_ACD);
	    if (args->address_format == CD_LBA_FORMAT)
		args->address.lba = lba;
	    else if (args->address_format == CD_MSF_FORMAT)
		lba2msf(lba, &args->address.msf.minute,
			     &args->address.msf.second,
			     &args->address.msf.frame);
	    break;
	}

    case CDIOCGETVOL:
	{
	    struct ioc_vol *arg = (struct ioc_vol *)addr;

	    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE,
					(caddr_t)&cdp->au, sizeof(cdp->au))))
		break;

	    if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
		error = EIO;
		break;
	    }
	    arg->vol[0] = cdp->au.port[0].volume;
	    arg->vol[1] = cdp->au.port[1].volume;
	    arg->vol[2] = cdp->au.port[2].volume;
	    arg->vol[3] = cdp->au.port[3].volume;
	    break;
	}

    case CDIOCSETVOL:
	{
	    struct ioc_vol *arg = (struct ioc_vol *)addr;

	    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE,
					(caddr_t)&cdp->au, sizeof(cdp->au))))
		break;
	    if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
		error = EIO;
		break;
	    }
	    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE_MASK,
					(caddr_t)&cdp->aumask,
					sizeof(cdp->aumask))))
		break;
	    cdp->au.data_length = 0;
	    cdp->au.port[0].channels = CHANNEL_0;
	    cdp->au.port[1].channels = CHANNEL_1;
	    cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume;
	    cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume;
	    cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume;
	    cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume;
	    error =  acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au));
	    break;
	}
    case CDIOCSETPATCH:
	{
	    struct ioc_patch *arg = (struct ioc_patch *)addr;

	    error = acd_setchan(cdp, arg->patch[0], arg->patch[1],
				arg->patch[2], arg->patch[3]);
	    break;
	}

    case CDIOCSETMONO:
	error = acd_setchan(cdp, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0);
	break;

    case CDIOCSETSTEREO:
	error = acd_setchan(cdp, CHANNEL_0, CHANNEL_1, 0, 0);
	break;

    case CDIOCSETMUTE:
	error = acd_setchan(cdp, 0, 0, 0, 0);
	break;

    case CDIOCSETLEFT:
	error = acd_setchan(cdp, CHANNEL_0, CHANNEL_0, 0, 0);
	break;

    case CDIOCSETRIGHT:
	error = acd_setchan(cdp, CHANNEL_1, CHANNEL_1, 0, 0);
	break;

    case CDRIOCBLANK:
	error = acd_blank(cdp, (*(int *)addr));
	break;

    case CDRIOCNEXTWRITEABLEADDR:
	{
	    struct acd_track_info track_info;

	    if ((error = acd_read_track_info(cdp, 0xff, &track_info)))
		break;

	    if (!track_info.nwa_valid) {
		error = EINVAL;
		break;
	    }
	    *(int*)addr = track_info.next_writeable_addr;
	}
	break;
 
    case CDRIOCINITWRITER:
	error = acd_init_writer(cdp, (*(int *)addr));
	break;

    case CDRIOCINITTRACK:
	error = acd_init_track(cdp, (struct cdr_track *)addr);
	break;

    case CDRIOCFLUSH:
	error = acd_flush(cdp);
	break;

    case CDRIOCFIXATE:
	error = acd_fixate(cdp, (*(int *)addr));
	break;

    case CDRIOCREADSPEED:
	{
	    int speed = *(int *)addr;

	    /* Preserve old behavior: units in multiples of CDROM speed */
	    if (speed < 177)
		speed *= 177;
	    error = acd_set_speed(cdp, speed, CDR_MAX_SPEED);
	}
	break;

    case CDRIOCWRITESPEED:
    	{
	    int speed = *(int *)addr;

	    if (speed < 177)
		speed *= 177;
	    error = acd_set_speed(cdp, CDR_MAX_SPEED, speed);
	}
	break;

    case CDRIOCGETBLOCKSIZE:
	*(int *)addr = cdp->block_size;
	break;

    case CDRIOCSETBLOCKSIZE:
	cdp->block_size = *(int *)addr;
	acd_set_ioparm(cdp);
	break;

    case CDRIOCGETPROGRESS:
	error = acd_get_progress(cdp, (int *)addr);
	break;

    case CDRIOCSENDCUE:
	error = acd_send_cue(cdp, (struct cdr_cuesheet *)addr);
	break;

    case DVDIOCREPORTKEY:
	if (!cdp->cap.read_dvdrom)
	    error = EINVAL;
	else
	    error = acd_report_key(cdp, (struct dvd_authinfo *)addr);
	break;

    case DVDIOCSENDKEY:
	if (!cdp->cap.read_dvdrom)
	    error = EINVAL;
	else
	    error = acd_send_key(cdp, (struct dvd_authinfo *)addr);
	break;

    case DVDIOCREADSTRUCTURE:
	if (!cdp->cap.read_dvdrom)
	    error = EINVAL;
	else
	    error = acd_read_structure(cdp, (struct dvd_struct *)addr);
	break;

    case DIOCGDINFO:
	*(struct disklabel *)addr = cdp->disklabel;
	break;

    case DIOCWDINFO:
    case DIOCSDINFO:
	if ((flags & FWRITE) == 0)
	    error = EBADF;
	else
	    error = setdisklabel(&cdp->disklabel, (struct disklabel *)addr, 0);
	break;

    case DIOCWLABEL:
	error = EBADF;
	break;

    case DIOCGPART:
	((struct partinfo *)addr)->disklab = &cdp->disklabel;
	((struct partinfo *)addr)->part = &cdp->disklabel.d_partitions[0];
	break;

    default:
	error = ENOTTY;
    }
    return error;
}

static void 
acdstrategy(struct buf *bp)
{
    struct acd_softc *cdp = bp->b_dev->si_drv1;
    int s;

    if (cdp->device->flags & ATA_D_DETACHING) {
	bp->b_flags |= B_ERROR;
	bp->b_error = ENXIO;
	biodone(bp);
	return;
    }

    /* if it's a null transfer, return immediatly. */
    if (bp->b_bcount == 0) {
	bp->b_resid = 0;
	biodone(bp);
	return;
    }
    
    bp->b_pblkno = bp->b_blkno;
    bp->b_resid = bp->b_bcount;

    s = splbio();
    bufqdisksort(&cdp->queue, bp);
    splx(s);
    ata_start(cdp->device->channel);
}

void 
acd_start(struct ata_device *atadev)
{
    struct acd_softc *cdp = atadev->driver;
    struct buf *bp = bufq_first(&cdp->queue);
    u_int32_t lba, lastlba, count;
    int8_t ccb[16];
    int track, blocksize;

    if (cdp->changer_info) {
	int i;

	cdp = cdp->driver[cdp->changer_info->current_slot];
	bp = bufq_first(&cdp->queue);

	/* check for work pending on any other slot */
	for (i = 0; i < cdp->changer_info->slots; i++) {
	    if (i == cdp->changer_info->current_slot)
		continue;
	    if (bufq_first(&(cdp->driver[i]->queue))) {
		if (!bp || time_second > (cdp->timestamp + 10)) {
		    acd_select_slot(cdp->driver[i]);
		    return;
		}
	    }
	}
    }
    if (!bp)
	return;
    bufq_remove(&cdp->queue, bp);

    /* reject all queued entries if media changed */
    if (cdp->device->flags & ATA_D_MEDIA_CHANGED) {
	bp->b_flags |= B_ERROR;
	bp->b_error = EIO;
	biodone(bp);
	return;
    }

    bzero(ccb, sizeof(ccb));

    track = (bp->b_dev->si_udev & 0x00ff0000) >> 16;

    if (track) {
	blocksize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352;
	lastlba = ntohl(cdp->toc.tab[track].addr.lba);
	if (bp->b_flags & B_PHYS)
	    lba = bp->b_offset / blocksize;
	else
	    lba = bp->b_blkno / (blocksize / DEV_BSIZE);
	lba += ntohl(cdp->toc.tab[track - 1].addr.lba);
    }
    else {
	blocksize = cdp->block_size;
	lastlba = cdp->disk_size;
	if (bp->b_flags & B_PHYS)
	    lba = bp->b_offset / blocksize;
	else
	    lba = bp->b_blkno / (blocksize / DEV_BSIZE);
    }

    if (bp->b_bcount % blocksize != 0) {
	bp->b_flags |= B_ERROR;
	bp->b_error = EINVAL;
	biodone(bp);
	return;
    }
    count = bp->b_bcount / blocksize;

    if (bp->b_flags & B_READ) {
	/* if transfer goes beyond range adjust it to be within limits */
	if (lba + count > lastlba) {
	    /* if we are entirely beyond EOM return EOF */
	    if (lastlba <= lba) {
		bp->b_resid = bp->b_bcount;
		biodone(bp);
		return;
	    }
	    count = lastlba - lba;
	}
	switch (blocksize) {
	case 2048:
	    ccb[0] = ATAPI_READ_BIG;
	    break;

	case 2352: 
	    ccb[0] = ATAPI_READ_CD;
	    ccb[9] = 0xf8;
	    break;

	default:
	    ccb[0] = ATAPI_READ_CD;
	    ccb[9] = 0x10;
	}
    }
    else 
	ccb[0] = ATAPI_WRITE_BIG;
    
    ccb[1] = 0;
    ccb[2] = lba>>24;
    ccb[3] = lba>>16;
    ccb[4] = lba>>8;
    ccb[5] = lba;
    ccb[6] = count>>16;
    ccb[7] = count>>8;
    ccb[8] = count;

    devstat_start_transaction(cdp->stats);
    bp->b_caller1 = cdp;
    atapi_queue_cmd(cdp->device, ccb, bp->b_data, count * blocksize,
		    bp->b_flags & B_READ ? ATPR_F_READ : 0, 
		    (ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30, acd_done, bp);
}

static int 
acd_done(struct atapi_request *request)
{
    struct buf *bp = request->driver;
    struct acd_softc *cdp = bp->b_caller1;
    
    if (request->error) {
	bp->b_error = request->error;
	bp->b_flags |= B_ERROR;
    }	
    else
	bp->b_resid = bp->b_bcount - request->donecount;
    devstat_end_transaction_buf(cdp->stats, bp);
    biodone(bp);
    return 0;
}

static void 
acd_read_toc(struct acd_softc *cdp)
{
    struct acd_devlist *entry;
    int track, ntracks, len;
    u_int32_t sizes[2];
    int8_t ccb[16];

    bzero(&cdp->toc, sizeof(cdp->toc));
    bzero(ccb, sizeof(ccb));

    if (atapi_test_ready(cdp->device) != 0)
	return;

    cdp->device->flags &= ~ATA_D_MEDIA_CHANGED;

    len = sizeof(struct ioc_toc_header) + sizeof(struct cd_toc_entry);
    ccb[0] = ATAPI_READ_TOC;
    ccb[7] = len>>8;
    ccb[8] = len;
    if (atapi_queue_cmd(cdp->device, ccb, (caddr_t)&cdp->toc, len,
			ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) {
	bzero(&cdp->toc, sizeof(cdp->toc));
	return;
    }
    ntracks = cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1;
    if (ntracks <= 0 || ntracks > MAXTRK) {
	bzero(&cdp->toc, sizeof(cdp->toc));
	return;
    }

    len = sizeof(struct ioc_toc_header)+(ntracks+1)*sizeof(struct cd_toc_entry);
    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_READ_TOC;
    ccb[7] = len>>8;
    ccb[8] = len;
    if (atapi_queue_cmd(cdp->device, ccb, (caddr_t)&cdp->toc, len,
			ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) {
	bzero(&cdp->toc, sizeof(cdp->toc));
	return;
    }
    cdp->toc.hdr.len = ntohs(cdp->toc.hdr.len);

    cdp->block_size = (cdp->toc.tab[0].control & 4) ? 2048 : 2352;
    acd_set_ioparm(cdp);
    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_READ_CAPACITY;
    if (atapi_queue_cmd(cdp->device, ccb, (caddr_t)sizes, sizeof(sizes),
			ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) {
	bzero(&cdp->toc, sizeof(cdp->toc));
	return;
    }
    cdp->disk_size = ntohl(sizes[0]) + 1;

    bzero(&cdp->disklabel, sizeof(struct disklabel));
    strncpy(cdp->disklabel.d_typename, "	       ", 
	    sizeof(cdp->disklabel.d_typename));
    strncpy(cdp->disklabel.d_typename, cdp->device->name, 
	    min(strlen(cdp->device->name),sizeof(cdp->disklabel.d_typename)-1));
    strncpy(cdp->disklabel.d_packname, "unknown	       ", 
	    sizeof(cdp->disklabel.d_packname));
    cdp->disklabel.d_secsize = cdp->block_size;
    cdp->disklabel.d_nsectors = 100;
    cdp->disklabel.d_ntracks = 1;
    cdp->disklabel.d_ncylinders = (cdp->disk_size / 100) + 1;
    cdp->disklabel.d_secpercyl = 100;
    cdp->disklabel.d_secperunit = cdp->disk_size;
    cdp->disklabel.d_rpm = 300;
    cdp->disklabel.d_interleave = 1;
    cdp->disklabel.d_flags = D_REMOVABLE;
    cdp->disklabel.d_npartitions = 1;
    cdp->disklabel.d_partitions[0].p_offset = 0;
    cdp->disklabel.d_partitions[0].p_size = cdp->disk_size;
    cdp->disklabel.d_partitions[0].p_fstype = FS_BSDFFS;
    cdp->disklabel.d_magic = DISKMAGIC;
    cdp->disklabel.d_magic2 = DISKMAGIC;
    cdp->disklabel.d_checksum = dkcksum(&cdp->disklabel);

    while ((entry = TAILQ_FIRST(&cdp->dev_list))) {
	destroy_dev(entry->dev);
	TAILQ_REMOVE(&cdp->dev_list, entry, chain);
	free(entry, M_ACD);
    }
    for (track = 1; track <= ntracks; track ++) {
	char name[16];

	sprintf(name, "acd%dt%d", cdp->lun, track);
	entry = malloc(sizeof(struct acd_devlist), M_ACD, M_WAITOK | M_ZERO);
	entry->dev = make_dev(&acd_cdevsw, (cdp->lun << 3) | (track << 16),
			      0, 0, 0644, name, NULL);
	entry->dev->si_drv1 = cdp->dev->si_drv1;
	reference_dev(entry->dev);
	TAILQ_INSERT_TAIL(&cdp->dev_list, entry, chain);
    }

#ifdef ACD_DEBUG
    if (cdp->disk_size && cdp->toc.hdr.ending_track) {
	ata_prtdev(cdp->device, "(%d sectors (%d bytes)), %d tracks ", 
		   cdp->disk_size, cdp->block_size,
		   cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1);
	if (cdp->toc.tab[0].control & 4)
	    printf("%dMB\n", cdp->disk_size / 512);
	else
	    printf("%d:%d audio\n",
		   cdp->disk_size / 75 / 60, cdp->disk_size / 75 % 60);
    }
#endif
}

static int
acd_play(struct acd_softc *cdp, int start, int end)
{
    int8_t ccb[16];

    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_PLAY_MSF;
    lba2msf(start, &ccb[3], &ccb[4], &ccb[5]);
    lba2msf(end, &ccb[6], &ccb[7], &ccb[8]);
    return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 10, NULL, NULL);
}

static int 
acd_setchan(struct acd_softc *cdp,
	    u_int8_t c0, u_int8_t c1, u_int8_t c2, u_int8_t c3)
{
    int error;

    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au, 
				sizeof(cdp->au))))
	return error;
    if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE)
	return EIO;
    cdp->au.data_length = 0;
    cdp->au.port[0].channels = c0;
    cdp->au.port[1].channels = c1;
    cdp->au.port[2].channels = c2;
    cdp->au.port[3].channels = c3;
    return acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au));
}

static int 
acd_select_done1(struct atapi_request *request)
{
    struct acd_softc *cdp = request->driver;

    cdp->changer_info->current_slot = cdp->slot;
    cdp->driver[cdp->changer_info->current_slot]->timestamp = time_second;
    wakeup(&cdp->changer_info);
    return 0;
}

static int 
acd_select_done(struct atapi_request *request)
{
    struct acd_softc *cdp = request->driver;
    int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 3, 0, 0, 0, 
		       cdp->slot, 0, 0, 0, 0, 0, 0, 0 };

    /* load the wanted slot */
    atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_AT_HEAD, 30, 
		    acd_select_done1, cdp);
    return 0;
}

static void 
acd_select_slot(struct acd_softc *cdp)
{
    int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 2, 0, 0, 0, 
		       cdp->changer_info->current_slot, 0, 0, 0, 0, 0, 0, 0 };

    /* unload the current media from player */
    atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_AT_HEAD, 30, 
		    acd_select_done, cdp);
}

static int
acd_init_writer(struct acd_softc *cdp, int test_write)
{
    int8_t ccb[16];

    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_REZERO;
    atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_QUIET, 60, NULL, NULL);
    ccb[0] = ATAPI_SEND_OPC_INFO;
    ccb[1] = 0x01;
    atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_QUIET, 30, NULL, NULL);
    return 0;
}

static int
acd_fixate(struct acd_softc *cdp, int multisession)
{
    int8_t ccb[16] = { ATAPI_CLOSE_TRACK, 0x01, 0x02, 0, 0, 0, 0, 0, 
		       0, 0, 0, 0, 0, 0, 0, 0 };
    int timeout = 5*60*2;
    int error;
    struct write_param param;

    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
				(caddr_t)&param, sizeof(param))))
	return error;

    param.data_length = 0;
    if (multisession)
	param.session_type = CDR_SESS_MULTI;
    else
	param.session_type = CDR_SESS_NONE;

    if ((error = acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10)))
	return error;
  
    error = atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL);
    if (error)
	return error;

    /* some drives just return ready, wait for the expected fixate time */
    if ((error = atapi_test_ready(cdp->device)) != EBUSY) {
	timeout = timeout / (cdp->cap.cur_write_speed / 177);
	tsleep(&error, 0, "acdfix", timeout * hz / 2);
	return atapi_test_ready(cdp->device);
    }

    while (timeout-- > 0) {
	if ((error = atapi_test_ready(cdp->device)) != EBUSY)
	    return error;
	tsleep(&error, 0, "acdcld", hz/2);
    }
    return EIO;
}

static int
acd_init_track(struct acd_softc *cdp, struct cdr_track *track)
{
    struct write_param param;
    int error;

    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
				(caddr_t)&param, sizeof(param))))
	return error;

    param.data_length = 0;
    param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE;
    param.page_length = 0x32;
    param.test_write = track->test_write ? 1 : 0;
    param.write_type = CDR_WTYPE_TRACK;
    param.session_type = CDR_SESS_NONE;
    param.fp = 0;
    param.packet_size = 0;

    if (cdp->cap.burnproof) 
	param.burnproof = 1;

    switch (track->datablock_type) {

    case CDR_DB_RAW:
	if (track->preemp)
	    param.track_mode = CDR_TMODE_AUDIO_PREEMP;
	else
	    param.track_mode = CDR_TMODE_AUDIO;
	cdp->block_size = 2352;
	param.datablock_type = CDR_DB_RAW;
	param.session_format = CDR_SESS_CDROM;
	break;

    case CDR_DB_ROM_MODE1:
	cdp->block_size = 2048;
	param.track_mode = CDR_TMODE_DATA;
	param.datablock_type = CDR_DB_ROM_MODE1;
	param.session_format = CDR_SESS_CDROM;
	break;

    case CDR_DB_ROM_MODE2:
	cdp->block_size = 2336;
	param.track_mode = CDR_TMODE_DATA;
	param.datablock_type = CDR_DB_ROM_MODE2;
	param.session_format = CDR_SESS_CDROM;
	break;

    case CDR_DB_XA_MODE1:
	cdp->block_size = 2048;
	param.track_mode = CDR_TMODE_DATA;
	param.datablock_type = CDR_DB_XA_MODE1;
	param.session_format = CDR_SESS_CDROM_XA;
	break;

    case CDR_DB_XA_MODE2_F1:
	cdp->block_size = 2056;
	param.track_mode = CDR_TMODE_DATA;
	param.datablock_type = CDR_DB_XA_MODE2_F1;
	param.session_format = CDR_SESS_CDROM_XA;
	break;

    case CDR_DB_XA_MODE2_F2:
	cdp->block_size = 2324;
	param.track_mode = CDR_TMODE_DATA;
	param.datablock_type = CDR_DB_XA_MODE2_F2;
	param.session_format = CDR_SESS_CDROM_XA;
	break;

    case CDR_DB_XA_MODE2_MIX:
	cdp->block_size = 2332;
	param.track_mode = CDR_TMODE_DATA;
	param.datablock_type = CDR_DB_XA_MODE2_MIX;
	param.session_format = CDR_SESS_CDROM_XA;
	break;
    }
    acd_set_ioparm(cdp);
    return acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10);
}

static int
acd_flush(struct acd_softc *cdp)
{
    int8_t ccb[16] = { ATAPI_SYNCHRONIZE_CACHE, 0, 0, 0, 0, 0, 0, 0,
		       0, 0, 0, 0, 0, 0, 0, 0 };

    return atapi_queue_cmd(cdp->device, ccb, NULL, 0, ATPR_F_QUIET, 60,
			   NULL, NULL);
}

static int
acd_read_track_info(struct acd_softc *cdp,
		    int32_t lba, struct acd_track_info *info)
{
    int8_t ccb[16] = { ATAPI_READ_TRACK_INFO, 1,
		     lba>>24, lba>>16, lba>>8, lba,
		     0,
		     sizeof(*info)>>8, sizeof(*info),
		     0, 0, 0, 0, 0, 0, 0 };
    int error;

    if ((error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)info, sizeof(*info),
				 ATPR_F_READ, 30, NULL, NULL)))
	return error;
    info->track_start_addr = ntohl(info->track_start_addr);
    info->next_writeable_addr = ntohl(info->next_writeable_addr);
    info->free_blocks = ntohl(info->free_blocks);
    info->fixed_packet_size = ntohl(info->fixed_packet_size);
    info->track_length = ntohl(info->track_length);
    return 0;
}

static int
acd_get_progress(struct acd_softc *cdp, int *finished)
{
    int8_t ccb[16] = { ATAPI_READ_CAPACITY, 0, 0, 0, 0, 0, 0, 0,  
		       0, 0, 0, 0, 0, 0, 0, 0 };
    struct atapi_reqsense *sense = cdp->device->result;
    char tmp[8];

    if (atapi_test_ready(cdp->device) != EBUSY) {
	if (atapi_queue_cmd(cdp->device, ccb, tmp, sizeof(tmp),
			    ATPR_F_READ, 30, NULL, NULL) != EBUSY) {
	    *finished = 100;
	    return 0;
	}
    }
    if (sense->sksv)
	*finished = 
	    ((sense->sk_specific2 | (sense->sk_specific1 << 8)) * 100) / 65535;
    else
	*finished = 0;
    return 0;
}

static int
acd_send_cue(struct acd_softc *cdp, struct cdr_cuesheet *cuesheet)
{
    struct write_param param;
    int8_t ccb[16] = { ATAPI_SEND_CUE_SHEET, 0, 0, 0, 0, 0, 
		       cuesheet->len>>16, cuesheet->len>>8, cuesheet->len,
		       0, 0, 0, 0, 0, 0, 0 };
    int8_t *buffer;
    int32_t error;
#ifdef ACD_DEBUG
    int i;
#endif

    if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
				(caddr_t)&param, sizeof(param))))
	return error;
    param.data_length = 0;
    param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE;
    param.page_length = 0x32;
    param.test_write = cuesheet->test_write ? 1 : 0;
    param.write_type = CDR_WTYPE_SESSION;
    param.session_type = cuesheet->session_type;
    param.fp = 0;
    param.packet_size = 0;
    param.track_mode = CDR_TMODE_AUDIO;
    param.datablock_type = CDR_DB_RAW;
    param.session_format = cuesheet->session_format;
    if (cdp->cap.burnproof) 
	param.burnproof = 1;
    if ((error = acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10)))
	return error;

    buffer = malloc(cuesheet->len, M_ACD, M_WAITOK);
    if (!buffer)
	return ENOMEM;
    if ((error = copyin(cuesheet->entries, buffer, cuesheet->len)))
	return error;
#ifdef ACD_DEBUG
    printf("acd: cuesheet lenght = %d\n", cuesheet->len);
    for (i=0; i<cuesheet->len; i++)
	if (i%8)
	    printf(" %02x", buffer[i]);
	else
	    printf("\n%02x", buffer[i]);
    printf("\n");
#endif
    error = atapi_queue_cmd(cdp->device, ccb, buffer, cuesheet->len, 0,
			    30, NULL, NULL);
    free(buffer, M_ACD);
    return error;
}

static int
acd_report_key(struct acd_softc *cdp, struct dvd_authinfo *ai)
{
    struct dvd_miscauth *d;
    u_int32_t lba = 0;
    int16_t length;
    int8_t ccb[16];
    int error;

    /* this is common even for ai->format == DVD_INVALIDATE_AGID */
    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_REPORT_KEY;
    ccb[2] = (lba >> 24) & 0xff;
    ccb[3] = (lba >> 16) & 0xff;
    ccb[4] = (lba >> 8) & 0xff;
    ccb[5] = lba & 0xff;
    ccb[10] = (ai->agid << 6) | ai->format;

    switch (ai->format) {
    case DVD_REPORT_AGID:
    case DVD_REPORT_ASF:
    case DVD_REPORT_RPC:
	length = 8;
	break;
    case DVD_REPORT_KEY1:
	length = 12;
	break;
    case DVD_REPORT_TITLE_KEY:
	length = 12;
	lba = ai->lba;
	break;
    case DVD_REPORT_CHALLENGE:
	length = 16;
	break;
    case DVD_INVALIDATE_AGID:
	return(atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 10, NULL, NULL));
    default:
	return EINVAL;
    }

    ccb[8] = (length >> 8) & 0xff;
    ccb[9] = length & 0xff;

    d = malloc(length, M_ACD, M_WAITOK | M_ZERO);
    d->length = htons(length - 2);

    error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)d, length,
			    ATPR_F_READ, 10, NULL, NULL);
    if (error) {
        free(d, M_ACD);
	return(error);
    }

    switch (ai->format) {
    case DVD_REPORT_AGID:
	ai->agid = d->data[3] >> 6;
	break;
    
    case DVD_REPORT_CHALLENGE:
	bcopy(&d->data[0], &ai->keychal[0], 10);
	break;
    
    case DVD_REPORT_KEY1:
	bcopy(&d->data[0], &ai->keychal[0], 5);
	break;
    
    case DVD_REPORT_TITLE_KEY:
	ai->cpm = (d->data[0] >> 7);
	ai->cp_sec = (d->data[0] >> 6) & 0x1;
	ai->cgms = (d->data[0] >> 4) & 0x3;
	bcopy(&d->data[1], &ai->keychal[0], 5);
	break;
    
    case DVD_REPORT_ASF:
	ai->asf = d->data[3] & 1;
	break;
    
    case DVD_REPORT_RPC:
	ai->reg_type = (d->data[0] >> 6);
	ai->vend_rsts = (d->data[0] >> 3) & 0x7;
	ai->user_rsts = d->data[0] & 0x7;
	ai->region = d->data[1];
	ai->rpc_scheme = d->data[2];
	break;
    
    case DVD_INVALIDATE_AGID:
	/* not reached */
	break;

    default:
	error = EINVAL;
    }
    free(d, M_ACD);
    return error;
}

static int
acd_send_key(struct acd_softc *cdp, struct dvd_authinfo *ai)
{
    struct dvd_miscauth *d;
    int16_t length;
    int8_t ccb[16];
    int error;

    switch (ai->format) {
    case DVD_SEND_CHALLENGE:
	length = 16;
	d = malloc(length, M_ACD, M_WAITOK | M_ZERO);
	bcopy(ai->keychal, &d->data[0], 10);
	break;

    case DVD_SEND_KEY2:
	length = 12;
	d = malloc(length, M_ACD, M_WAITOK | M_ZERO);
	bcopy(&ai->keychal[0], &d->data[0], 5);
	break;
    
    case DVD_SEND_RPC:
	length = 8;
	d = malloc(length, M_ACD, M_WAITOK | M_ZERO);
	d->data[0] = ai->region;
	break;

    default:
	return EINVAL;
    }

    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_SEND_KEY;
    ccb[8] = (length >> 8) & 0xff;
    ccb[9] = length & 0xff;
    ccb[10] = (ai->agid << 6) | ai->format;
    d->length = htons(length - 2);
    error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)d, length, 0,
			    10, NULL, NULL);
    free(d, M_ACD);
    return error;
}

static int
acd_read_structure(struct acd_softc *cdp, struct dvd_struct *s)
{
    struct dvd_miscauth *d;
    u_int16_t length;
    int8_t ccb[16];
    int error = 0;

    switch(s->format) {
    case DVD_STRUCT_PHYSICAL:
	length = 21;
	break;

    case DVD_STRUCT_COPYRIGHT:
	length = 8;
	break;

    case DVD_STRUCT_DISCKEY:
	length = 2052;
	break;

    case DVD_STRUCT_BCA:
	length = 192;
	break;

    case DVD_STRUCT_MANUFACT:
	length = 2052;
	break;

    case DVD_STRUCT_DDS:
    case DVD_STRUCT_PRERECORDED:
    case DVD_STRUCT_UNIQUEID:
    case DVD_STRUCT_LIST:
    case DVD_STRUCT_CMI:
    case DVD_STRUCT_RMD_LAST:
    case DVD_STRUCT_RMD_RMA:
    case DVD_STRUCT_DCB:
	return ENOSYS;

    default:
	return EINVAL;
    }

    d = malloc(length, M_ACD, M_WAITOK | M_ZERO);
    d->length = htons(length - 2);
	
    bzero(ccb, sizeof(ccb));
    ccb[0] = ATAPI_READ_STRUCTURE;
    ccb[6] = s->layer_num;
    ccb[7] = s->format;
    ccb[8] = (length >> 8) & 0xff;
    ccb[9] = length & 0xff;
    ccb[10] = s->agid << 6;
    error = atapi_queue_cmd(cdp->device, ccb, (caddr_t)d, length, ATPR_F_READ,
			    30, NULL, NULL);
    if (error) {
	free(d, M_ACD);
	return error;
    }

    switch (s->format) {
    case DVD_STRUCT_PHYSICAL: {
	struct dvd_layer *layer = (struct dvd_layer *)&s->data[0];

	layer->book_type = d->data[0] >> 4;
	layer->book_version = d->data[0] & 0xf;
	layer->disc_size = d->data[1] >> 4;
	layer->max_rate = d->data[1] & 0xf;
	layer->nlayers = (d->data[2] >> 5) & 3;
	layer->track_path = (d->data[2] >> 4) & 1;
	layer->layer_type = d->data[2] & 0xf;
	layer->linear_density = d->data[3] >> 4;
	layer->track_density = d->data[3] & 0xf;
	layer->start_sector = d->data[5] << 16 | d->data[6] << 8 | d->data[7];
	layer->end_sector = d->data[9] << 16 | d->data[10] << 8 | d->data[11];
	layer->end_sector_l0 = d->data[13] << 16 | d->data[14] << 8|d->data[15];
	layer->bca = d->data[16] >> 7;
	break;
    }

    case DVD_STRUCT_COPYRIGHT:
	s->cpst = d->data[0];
	s->rmi = d->data[0];
	break;

    case DVD_STRUCT_DISCKEY:
	bcopy(&d->data[0], &s->data[0], 2048);
	break;

    case DVD_STRUCT_BCA:
	s->length = ntohs(d->length);
	bcopy(&d->data[0], &s->data[0], s->length);
	break;

    case DVD_STRUCT_MANUFACT:
	s->length = ntohs(d->length);
	bcopy(&d->data[0], &s->data[0], s->length);
	break;
		
    default:
	error = EINVAL;
    }
    free(d, M_ACD);
    return error;
}

static int 
acd_eject(struct acd_softc *cdp, int close)
{
    int error;

    if ((error = acd_start_stop(cdp, 0)) == EBUSY) {
	if (!close)
	    return 0;
	if ((error = acd_start_stop(cdp, 3)))
	    return error;
	acd_read_toc(cdp);
	acd_prevent_allow(cdp, 1);
	cdp->flags |= F_LOCKED;
	return 0;
    }
    if (error)
	return error;
    if (close)
	return 0;
    acd_prevent_allow(cdp, 0);
    cdp->flags &= ~F_LOCKED;
    cdp->device->flags |= ATA_D_MEDIA_CHANGED;
    return acd_start_stop(cdp, 2);
}

static int
acd_blank(struct acd_softc *cdp, int blanktype)
{
    int8_t ccb[16] = { ATAPI_BLANK, 0x10 | (blanktype & 0x7), 0, 0, 0, 0, 0, 0, 
		       0, 0, 0, 0, 0, 0, 0, 0 };

    cdp->device->flags |= ATA_D_MEDIA_CHANGED;
    return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL);
}

static int
acd_prevent_allow(struct acd_softc *cdp, int lock)
{
    int8_t ccb[16] = { ATAPI_PREVENT_ALLOW, 0, 0, 0, lock,
		       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

    return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL);
}

static int
acd_start_stop(struct acd_softc *cdp, int start)
{
    int8_t ccb[16] = { ATAPI_START_STOP, 0, 0, 0, start,
		       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

    return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL);
}

static int
acd_pause_resume(struct acd_softc *cdp, int pause)
{
    int8_t ccb[16] = { ATAPI_PAUSE, 0, 0, 0, 0, 0, 0, 0, pause,
		       0, 0, 0, 0, 0, 0, 0 };

    return atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL);
}

static int
acd_mode_sense(struct acd_softc *cdp, int page, caddr_t pagebuf, int pagesize)
{
    int8_t ccb[16] = { ATAPI_MODE_SENSE_BIG, 0, page, 0, 0, 0, 0,
		       pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 };
    int error;

    error = atapi_queue_cmd(cdp->device, ccb, pagebuf, pagesize, ATPR_F_READ,
			    10, NULL, NULL);
#ifdef ACD_DEBUG
    atapi_dump("acd: mode sense ", pagebuf, pagesize);
#endif
    return error;
}

static int
acd_mode_select(struct acd_softc *cdp, caddr_t pagebuf, int pagesize)
{
    int8_t ccb[16] = { ATAPI_MODE_SELECT_BIG, 0x10, 0, 0, 0, 0, 0,
		     pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 };

#ifdef ACD_DEBUG
    ata_prtdev(cdp->device,
	       "modeselect pagesize=%d\n", pagesize);
    atapi_dump("mode select ", pagebuf, pagesize);
#endif
    return atapi_queue_cmd(cdp->device, ccb, pagebuf, pagesize, 0,
			   30, NULL, NULL);
}

static int
acd_set_speed(struct acd_softc *cdp, int rdspeed, int wrspeed)
{
    int8_t ccb[16] = { ATAPI_SET_SPEED, 0, rdspeed >> 8, rdspeed, 
		       wrspeed >> 8, wrspeed, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
    int error;

    error = atapi_queue_cmd(cdp->device, ccb, NULL, 0, 0, 30, NULL, NULL);
    if (!error)
	acd_get_cap(cdp);
    return error;
}

static void
acd_get_cap(struct acd_softc *cdp)
{
    int retry = 5;

    /* get drive capabilities, some drives needs this repeated */
    while (retry-- && acd_mode_sense(cdp, ATAPI_CDROM_CAP_PAGE,
				     (caddr_t)&cdp->cap, sizeof(cdp->cap)))

    cdp->cap.max_read_speed = ntohs(cdp->cap.max_read_speed);
    cdp->cap.cur_read_speed = ntohs(cdp->cap.cur_read_speed);
    cdp->cap.max_write_speed = ntohs(cdp->cap.max_write_speed);
    cdp->cap.cur_write_speed = max(ntohs(cdp->cap.cur_write_speed), 177);
    cdp->cap.max_vol_levels = ntohs(cdp->cap.max_vol_levels);
    cdp->cap.buf_size = ntohs(cdp->cap.buf_size);
}