File:  [DragonFly] / src / sys / dev / misc / kbd / kbd.c
Revision 1.10: download - view: text, annotated - select for diffs
Wed May 19 22:52:42 2004 UTC (9 years, 11 months ago) by dillon
Branches: MAIN
CVS tags: HEAD, DragonFly_1_0_REL, DragonFly_1_0_RC1, DragonFly_1_0A_REL
Device layer rollup commit.

* cdevsw_add() is now required.  cdevsw_add() and cdevsw_remove() may specify
  a mask/match indicating the range of supported minor numbers.  Multiple
  cdevsw_add()'s using the same major number, but distinctly different
  ranges, may be issued.  All devices that failed to call cdevsw_add() before
  now do.

* cdevsw_remove() now automatically marks all devices within its supported
  range as being destroyed.

* vnode->v_rdev is no longer resolved when the vnode is created.  Instead,
  only v_udev (a newly added field) is resolved.  v_rdev is resolved when
  the vnode is opened and cleared on the last close.

* A great deal of code was making rather dubious assumptions with regards
  to the validity of devices associated with vnodes, primarily due to
  the persistence of a device structure due to being indexed by (major, minor)
  instead of by (cdevsw, major, minor).  In particular, if you run a program
  which connects to a USB device and then you pull the USB device and plug
  it back in, the vnode subsystem will continue to believe that the device
  is open when, in fact, it isn't (because it was destroyed and recreated).

  In particular, note that all the VFS mount procedures now check devices
  via v_udev instead of v_rdev prior to calling VOP_OPEN(), since v_rdev
  is NULL prior to the first open.

* The disk layer's device interaction has been rewritten.  The disk layer
  (i.e. the slice and disklabel management layer) no longer overloads
  its data onto the device structure representing the underlying physical
  disk.  Instead, the disk layer uses the new cdevsw_add() functionality
  to register its own cdevsw using the underlying device's major number,
  and simply does NOT register the underlying device's cdevsw.  No
  confusion is created because the device hash is now based on
  (cdevsw,major,minor) rather then (major,minor).

  NOTE: This also means that underlying raw disk devices may use the entire
  device minor number instead of having to reserve the bits used by the disk
  layer, and also means that can we (theoretically) stack a fully
  disklabel-supported 'disk' on top of any block device.

* The new reference counting scheme prevents this by associating a device
  with a cdevsw and disconnecting the device from its cdevsw when the cdevsw
  is removed.  Additionally, all udev2dev() lookups run through the cdevsw
  mask/match and only successfully find devices still associated with an
  active cdevsw.

* Major work on MFS:  MFS no longer shortcuts vnode and device creation.  It
  now creates a real vnode and a real device and implements real open and
  close VOPs.  Additionally, due to the disk layer changes, MFS is no longer
  limited to 255 mounts.  The new limit is 16 million.  Since MFS creates a
  real device node, mount_mfs will now create a real /dev/mfs<PID> device
  that can be read from userland (e.g. so you can dump an MFS filesystem).

* BUF AND DEVICE STRATEGY changes.  The struct buf contains a b_dev field.
  In order to properly handle stacked devices we now require that the b_dev
  field be initialized before the device strategy routine is called.  This
  required some additional work in various VFS implementations.  To enforce
  this requirement, biodone() now sets b_dev to NODEV.  The new disk layer
  will adjust b_dev before forwarding a request to the actual physical
  device.

* A bug in the ISO CD boot sequence which resulted in a panic has been fixed.

Testing by: lots of people, but David Rhodus found the most aggregious bugs.

    1: /*-
    2:  * Copyright (c) 1999 Kazutaka YOKOTA <yokota@zodiac.mech.utsunomiya-u.ac.jp>
    3:  * All rights reserved.
    4:  *
    5:  * Redistribution and use in source and binary forms, with or without
    6:  * modification, are permitted provided that the following conditions
    7:  * are met:
    8:  * 1. Redistributions of source code must retain the above copyright
    9:  *    notice, this list of conditions and the following disclaimer as
   10:  *    the first lines of this file unmodified.
   11:  * 2. Redistributions in binary form must reproduce the above copyright
   12:  *    notice, this list of conditions and the following disclaimer in the
   13:  *    documentation and/or other materials provided with the distribution.
   14:  *
   15:  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
   16:  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17:  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18:  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   19:  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20:  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21:  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22:  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23:  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24:  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25:  *
   26:  * $FreeBSD: src/sys/dev/kbd/kbd.c,v 1.17.2.2 2001/07/30 16:46:43 yokota Exp $
   27:  * $DragonFly: src/sys/dev/misc/kbd/kbd.c,v 1.10 2004/05/19 22:52:42 dillon Exp $
   28:  */
   29: 
   30: #include "opt_kbd.h"
   31: 
   32: #include <sys/param.h>
   33: #include <sys/systm.h>
   34: #include <sys/kernel.h>
   35: #include <sys/malloc.h>
   36: #include <sys/conf.h>
   37: #include <sys/proc.h>
   38: #include <sys/tty.h>
   39: #include <sys/poll.h>
   40: #include <sys/vnode.h>
   41: #include <sys/uio.h>
   42: 
   43: #include <machine/console.h>
   44: 
   45: #include "kbdreg.h"
   46: 
   47: #define KBD_INDEX(dev)	minor(dev)
   48: 
   49: typedef struct genkbd_softc {
   50: 	int		gkb_flags;	/* flag/status bits */
   51: #define KB_ASLEEP	(1 << 0)
   52: 	struct clist	gkb_q;		/* input queue */
   53: 	struct selinfo	gkb_rsel;
   54: } genkbd_softc_t;
   55: 
   56: static	SLIST_HEAD(, keyboard_driver) keyboard_drivers =
   57:  	SLIST_HEAD_INITIALIZER(keyboard_drivers);
   58: 
   59: SET_DECLARE(kbddriver_set, const keyboard_driver_t);
   60: 
   61: /* local arrays */
   62: 
   63: /*
   64:  * We need at least one entry each in order to initialize a keyboard
   65:  * for the kernel console.  The arrays will be increased dynamically
   66:  * when necessary.
   67:  */
   68: 
   69: static int		keyboards = 1;
   70: static keyboard_t	*kbd_ini;
   71: static keyboard_t	**keyboard = &kbd_ini;
   72: static keyboard_switch_t *kbdsw_ini;
   73:        keyboard_switch_t **kbdsw = &kbdsw_ini;
   74: 
   75: #define ARRAY_DELTA	4
   76: 
   77: static int
   78: kbd_realloc_array(void)
   79: {
   80: 	keyboard_t **new_kbd;
   81: 	keyboard_switch_t **new_kbdsw;
   82: 	int newsize;
   83: 	int s;
   84: 
   85: 	s = spltty();
   86: 	newsize = ((keyboards + ARRAY_DELTA)/ARRAY_DELTA)*ARRAY_DELTA;
   87: 	new_kbd = malloc(sizeof(*new_kbd) * newsize, M_DEVBUF,
   88: 				M_WAITOK | M_ZERO);
   89: 	new_kbdsw = malloc(sizeof(*new_kbdsw) * newsize, M_DEVBUF,
   90: 				M_WAITOK | M_ZERO);
   91: 	bcopy(keyboard, new_kbd, sizeof(*keyboard)*keyboards);
   92: 	bcopy(kbdsw, new_kbdsw, sizeof(*kbdsw)*keyboards);
   93: 	if (keyboards > 1) {
   94: 		free(keyboard, M_DEVBUF);
   95: 		free(kbdsw, M_DEVBUF);
   96: 	}
   97: 	keyboard = new_kbd;
   98: 	kbdsw = new_kbdsw;
   99: 	keyboards = newsize;
  100: 	splx(s);
  101: 
  102: 	if (bootverbose)
  103: 		printf("kbd: new array size %d\n", keyboards);
  104: 
  105: 	return 0;
  106: }
  107: 
  108: /*
  109:  * Low-level keyboard driver functions
  110:  * Keyboard subdrivers, such as the AT keyboard driver and the USB keyboard
  111:  * driver, call these functions to initialize the keyboard_t structure
  112:  * and register it to the virtual keyboard driver `kbd'.
  113:  */
  114: 
  115: /* initialize the keyboard_t structure */
  116: void
  117: kbd_init_struct(keyboard_t *kbd, char *name, int type, int unit, int config,
  118: 		int port, int port_size)
  119: {
  120: 	kbd->kb_flags = KB_NO_DEVICE;	/* device has not been found */
  121: 	kbd->kb_name = name;
  122: 	kbd->kb_type = type;
  123: 	kbd->kb_unit = unit;
  124: 	kbd->kb_config = config & ~KB_CONF_PROBE_ONLY;
  125: 	kbd->kb_led = 0;		/* unknown */
  126: 	kbd->kb_io_base = port;
  127: 	kbd->kb_io_size = port_size;
  128: 	kbd->kb_data = NULL;
  129: 	kbd->kb_keymap = NULL;
  130: 	kbd->kb_accentmap = NULL;
  131: 	kbd->kb_fkeytab = NULL;
  132: 	kbd->kb_fkeytab_size = 0;
  133: 	kbd->kb_delay1 = KB_DELAY1;	/* these values are advisory only */
  134: 	kbd->kb_delay2 = KB_DELAY2;
  135: 	kbd->kb_count = 0L;
  136: 	bzero(kbd->kb_lastact, sizeof(kbd->kb_lastact));
  137: }
  138: 
  139: void
  140: kbd_set_maps(keyboard_t *kbd, keymap_t *keymap, accentmap_t *accmap,
  141: 	     fkeytab_t *fkeymap, int fkeymap_size)
  142: {
  143: 	kbd->kb_keymap = keymap;
  144: 	kbd->kb_accentmap = accmap;
  145: 	kbd->kb_fkeytab = fkeymap;
  146: 	kbd->kb_fkeytab_size = fkeymap_size;
  147: }
  148: 
  149: /* declare a new keyboard driver */
  150: int
  151: kbd_add_driver(keyboard_driver_t *driver)
  152: {
  153: 	if (SLIST_NEXT(driver, link))
  154: 		return EINVAL;
  155: 	SLIST_INSERT_HEAD(&keyboard_drivers, driver, link);
  156: 	return 0;
  157: }
  158: 
  159: int
  160: kbd_delete_driver(keyboard_driver_t *driver)
  161: {
  162: 	SLIST_REMOVE(&keyboard_drivers, driver, keyboard_driver, link);
  163: 	SLIST_NEXT(driver, link) = NULL;
  164: 	return 0;
  165: }
  166: 
  167: /* register a keyboard and associate it with a function table */
  168: int
  169: kbd_register(keyboard_t *kbd)
  170: {
  171: 	const keyboard_driver_t **list;
  172: 	const keyboard_driver_t *p;
  173: 	int index;
  174: 
  175: 	for (index = 0; index < keyboards; ++index) {
  176: 		if (keyboard[index] == NULL)
  177: 			break;
  178: 	}
  179: 	if (index >= keyboards) {
  180: 		if (kbd_realloc_array())
  181: 			return -1;
  182: 	}
  183: 
  184: 	kbd->kb_index = index;
  185: 	KBD_UNBUSY(kbd);
  186: 	KBD_VALID(kbd);
  187: 	kbd->kb_active = 0;	/* disabled until someone calls kbd_enable() */
  188: 	kbd->kb_token = NULL;
  189: 	kbd->kb_callback.kc_func = NULL;
  190: 	kbd->kb_callback.kc_arg = NULL;
  191: 
  192: 	SLIST_FOREACH(p, &keyboard_drivers, link) {
  193: 		if (strcmp(p->name, kbd->kb_name) == 0) {
  194: 			keyboard[index] = kbd;
  195: 			kbdsw[index] = p->kbdsw;
  196: 			return index;
  197: 		}
  198: 	}
  199: 	SET_FOREACH(list, kbddriver_set) {
  200: 		p = *list;
  201: 		if (strcmp(p->name, kbd->kb_name) == 0) {
  202: 			keyboard[index] = kbd;
  203: 			kbdsw[index] = p->kbdsw;
  204: 			return index;
  205: 		}
  206: 	}
  207: 
  208: 	return -1;
  209: }
  210: 
  211: int
  212: kbd_unregister(keyboard_t *kbd)
  213: {
  214: 	int error;
  215: 	int s;
  216: 
  217: 	if ((kbd->kb_index < 0) || (kbd->kb_index >= keyboards))
  218: 		return ENOENT;
  219: 	if (keyboard[kbd->kb_index] != kbd)
  220: 		return ENOENT;
  221: 
  222: 	s = spltty();
  223: 	if (KBD_IS_BUSY(kbd)) {
  224: 		error = (*kbd->kb_callback.kc_func)(kbd, KBDIO_UNLOADING,
  225: 						    kbd->kb_callback.kc_arg);
  226: 		if (error) {
  227: 			splx(s);
  228: 			return error;
  229: 		}
  230: 		if (KBD_IS_BUSY(kbd)) {
  231: 			splx(s);
  232: 			return EBUSY;
  233: 		}
  234: 	}
  235: 	KBD_INVALID(kbd);
  236: 	keyboard[kbd->kb_index] = NULL;
  237: 	kbdsw[kbd->kb_index] = NULL;
  238: 
  239: 	splx(s);
  240: 	return 0;
  241: }
  242: 
  243: /* find a funciton table by the driver name */
  244: keyboard_switch_t
  245: *kbd_get_switch(char *driver)
  246: {
  247: 	const keyboard_driver_t **list;
  248: 	const keyboard_driver_t *p;
  249: 
  250: 	SLIST_FOREACH(p, &keyboard_drivers, link) {
  251: 		if (strcmp(p->name, driver) == 0)
  252: 			return p->kbdsw;
  253: 	}
  254: 	SET_FOREACH(list, kbddriver_set) {
  255: 		p = *list;
  256: 		if (strcmp(p->name, driver) == 0)
  257: 			return p->kbdsw;
  258: 	}
  259: 
  260: 	return NULL;
  261: }
  262: 
  263: /*
  264:  * Keyboard client functions
  265:  * Keyboard clients, such as the console driver `syscons' and the keyboard
  266:  * cdev driver, use these functions to claim and release a keyboard for
  267:  * exclusive use.
  268:  */
  269: 
  270: /* find the keyboard specified by a driver name and a unit number */
  271: int
  272: kbd_find_keyboard(char *driver, int unit)
  273: {
  274: 	int i;
  275: 
  276: 	for (i = 0; i < keyboards; ++i) {
  277: 		if (keyboard[i] == NULL)
  278: 			continue;
  279: 		if (!KBD_IS_VALID(keyboard[i]))
  280: 			continue;
  281: 		if (strcmp("*", driver) && strcmp(keyboard[i]->kb_name, driver))
  282: 			continue;
  283: 		if ((unit != -1) && (keyboard[i]->kb_unit != unit))
  284: 			continue;
  285: 		return i;
  286: 	}
  287: 	return -1;
  288: }
  289: 
  290: /* allocate a keyboard */
  291: int
  292: kbd_allocate(char *driver, int unit, void *id, kbd_callback_func_t *func,
  293: 	     void *arg)
  294: {
  295: 	int index;
  296: 	int s;
  297: 
  298: 	if (func == NULL)
  299: 		return -1;
  300: 
  301: 	s = spltty();
  302: 	index = kbd_find_keyboard(driver, unit);
  303: 	if (index >= 0) {
  304: 		if (KBD_IS_BUSY(keyboard[index])) {
  305: 			splx(s);
  306: 			return -1;
  307: 		}
  308: 		keyboard[index]->kb_token = id;
  309: 		KBD_BUSY(keyboard[index]);
  310: 		keyboard[index]->kb_callback.kc_func = func;
  311: 		keyboard[index]->kb_callback.kc_arg = arg;
  312: 		(*kbdsw[index]->clear_state)(keyboard[index]);
  313: 	}
  314: 	splx(s);
  315: 	return index;
  316: }
  317: 
  318: int
  319: kbd_release(keyboard_t *kbd, void *id)
  320: {
  321: 	int error;
  322: 	int s;
  323: 
  324: 	s = spltty();
  325: 	if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) {
  326: 		error = EINVAL;
  327: 	} else if (kbd->kb_token != id) {
  328: 		error = EPERM;
  329: 	} else {
  330: 		kbd->kb_token = NULL;
  331: 		KBD_UNBUSY(kbd);
  332: 		kbd->kb_callback.kc_func = NULL;
  333: 		kbd->kb_callback.kc_arg = NULL;
  334: 		(*kbdsw[kbd->kb_index]->clear_state)(kbd);
  335: 		error = 0;
  336: 	}
  337: 	splx(s);
  338: 	return error;
  339: }
  340: 
  341: int
  342: kbd_change_callback(keyboard_t *kbd, void *id, kbd_callback_func_t *func,
  343: 		    void *arg)
  344: {
  345: 	int error;
  346: 	int s;
  347: 
  348: 	s = spltty();
  349: 	if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) {
  350: 		error = EINVAL;
  351: 	} else if (kbd->kb_token != id) {
  352: 		error = EPERM;
  353: 	} else if (func == NULL) {
  354: 		error = EINVAL;
  355: 	} else {
  356: 		kbd->kb_callback.kc_func = func;
  357: 		kbd->kb_callback.kc_arg = arg;
  358: 		error = 0;
  359: 	}
  360: 	splx(s);
  361: 	return error;
  362: }
  363: 
  364: /* get a keyboard structure */
  365: keyboard_t
  366: *kbd_get_keyboard(int index)
  367: {
  368: 	if ((index < 0) || (index >= keyboards))
  369: 		return NULL;
  370: 	if (keyboard[index] == NULL)
  371: 		return NULL;
  372: 	if (!KBD_IS_VALID(keyboard[index]))
  373: 		return NULL;
  374: 	return keyboard[index];
  375: }
  376: 
  377: /*
  378:  * The back door for the console driver; configure keyboards
  379:  * This function is for the kernel console to initialize keyboards
  380:  * at very early stage.
  381:  */
  382: 
  383: int
  384: kbd_configure(int flags)
  385: {
  386: 	const keyboard_driver_t **list;
  387: 	const keyboard_driver_t *p;
  388: 
  389: 	SLIST_FOREACH(p, &keyboard_drivers, link) {
  390: 		if (p->configure != NULL)
  391: 			(*p->configure)(flags);
  392: 	}
  393: 	SET_FOREACH(list, kbddriver_set) {
  394: 		p = *list;
  395: 		if (p->configure != NULL)
  396: 			(*p->configure)(flags);
  397: 	}
  398: 
  399: 	return 0;
  400: }
  401: 
  402: #ifdef KBD_INSTALL_CDEV
  403: 
  404: /*
  405:  * Virtual keyboard cdev driver functions
  406:  * The virtual keyboard driver dispatches driver functions to
  407:  * appropriate subdrivers.
  408:  */
  409: 
  410: #define KBD_UNIT(dev)	minor(dev)
  411: 
  412: static d_open_t		genkbdopen;
  413: static d_close_t	genkbdclose;
  414: static d_read_t		genkbdread;
  415: static d_write_t	genkbdwrite;
  416: static d_ioctl_t	genkbdioctl;
  417: static d_poll_t		genkbdpoll;
  418: 
  419: #define CDEV_MAJOR	112
  420: 
  421: static struct cdevsw kbd_cdevsw = {
  422: 	/* name */	"kbd",
  423: 	/* maj */	CDEV_MAJOR,
  424: 	/* flags */	0,
  425: 	/* port */	NULL,
  426: 	/* clone */	NULL,
  427: 
  428: 	/* open */	genkbdopen,
  429: 	/* close */	genkbdclose,
  430: 	/* read */	genkbdread,
  431: 	/* write */	genkbdwrite,
  432: 	/* ioctl */	genkbdioctl,
  433: 	/* poll */	genkbdpoll,
  434: 	/* mmap */	nommap,
  435: 	/* strategy */	nostrategy,
  436: 	/* dump */	nodump,
  437: 	/* psize */	nopsize
  438: };
  439: 
  440: int
  441: kbd_attach(keyboard_t *kbd)
  442: {
  443: 	dev_t dev;
  444: 
  445: 	if (kbd->kb_index >= keyboards)
  446: 		return EINVAL;
  447: 	if (keyboard[kbd->kb_index] != kbd)
  448: 		return EINVAL;
  449: 
  450: 	cdevsw_add(&kbd_cdevsw, -1, kbd->kb_index);
  451: 	dev = make_dev(&kbd_cdevsw, kbd->kb_index, UID_ROOT, GID_WHEEL, 0600,
  452: 		       "kbd%r", kbd->kb_index);
  453: 	if (dev->si_drv1 == NULL)
  454: 		dev->si_drv1 = malloc(sizeof(genkbd_softc_t), M_DEVBUF,
  455: 				      M_WAITOK);
  456: 	bzero(dev->si_drv1, sizeof(genkbd_softc_t));
  457: 
  458: 	printf("kbd%d at %s%d\n", kbd->kb_index, kbd->kb_name, kbd->kb_unit);
  459: 	return 0;
  460: }
  461: 
  462: int
  463: kbd_detach(keyboard_t *kbd)
  464: {
  465: 	dev_t dev;
  466: 
  467: 	if (kbd->kb_index >= keyboards)
  468: 		return EINVAL;
  469: 	if (keyboard[kbd->kb_index] != kbd)
  470: 		return EINVAL;
  471: 
  472: 	/*
  473: 	 * Deal with refs properly.  The KBD driver really ought to have
  474: 	 * recorded the dev_t separately.
  475: 	 */
  476: 	if ((dev = make_adhoc_dev(&kbd_cdevsw, kbd->kb_index)) != NODEV) {
  477: 		if (dev->si_drv1) {
  478: 			free(dev->si_drv1, M_DEVBUF);
  479: 			dev->si_drv1 = NULL;
  480: 		}
  481: 	}
  482: 	cdevsw_remove(&kbd_cdevsw, -1, kbd->kb_index);
  483: 	return 0;
  484: }
  485: 
  486: /*
  487:  * Generic keyboard cdev driver functions
  488:  * Keyboard subdrivers may call these functions to implement common
  489:  * driver functions.
  490:  */
  491: 
  492: #define KB_QSIZE	512
  493: #define KB_BUFSIZE	64
  494: 
  495: static kbd_callback_func_t genkbd_event;
  496: 
  497: static int
  498: genkbdopen(dev_t dev, int mode, int flag, d_thread_t *td)
  499: {
  500: 	keyboard_t *kbd;
  501: 	genkbd_softc_t *sc;
  502: 	int s;
  503: 	int i;
  504: 
  505: 	s = spltty();
  506: 	sc = dev->si_drv1;
  507: 	kbd = kbd_get_keyboard(KBD_INDEX(dev));
  508: 	if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
  509: 		splx(s);
  510: 		return ENXIO;
  511: 	}
  512: 	i = kbd_allocate(kbd->kb_name, kbd->kb_unit, sc,
  513: 			 genkbd_event, (void *)sc);
  514: 	if (i < 0) {
  515: 		splx(s);
  516: 		return EBUSY;
  517: 	}
  518: 	/* assert(i == kbd->kb_index) */
  519: 	/* assert(kbd == kbd_get_keyboard(i)) */
  520: 
  521: 	/*
  522: 	 * NOTE: even when we have successfully claimed a keyboard,
  523: 	 * the device may still be missing (!KBD_HAS_DEVICE(kbd)).
  524: 	 */
  525: 
  526: #if 0
  527: 	bzero(&sc->gkb_q, sizeof(sc->gkb_q));
  528: #endif
  529: 	clist_alloc_cblocks(&sc->gkb_q, KB_QSIZE, KB_QSIZE/2); /* XXX */
  530: 	sc->gkb_rsel.si_flags = 0;
  531: 	sc->gkb_rsel.si_pid = 0;
  532: 	splx(s);
  533: 
  534: 	return 0;
  535: }
  536: 
  537: static int
  538: genkbdclose(dev_t dev, int mode, int flag, d_thread_t *td)
  539: {
  540: 	keyboard_t *kbd;
  541: 	genkbd_softc_t *sc;
  542: 	int s;
  543: 
  544: 	/*
  545: 	 * NOTE: the device may have already become invalid.
  546: 	 * kbd == NULL || !KBD_IS_VALID(kbd)
  547: 	 */
  548: 	s = spltty();
  549: 	sc = dev->si_drv1;
  550: 	kbd = kbd_get_keyboard(KBD_INDEX(dev));
  551: 	if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
  552: 		/* XXX: we shall be forgiving and don't report error... */
  553: 	} else {
  554: 		kbd_release(kbd, (void *)sc);
  555: #if 0
  556: 		clist_free_cblocks(&sc->gkb_q);
  557: #endif
  558: 	}
  559: 	splx(s);
  560: 	return 0;
  561: }
  562: 
  563: static int
  564: genkbdread(dev_t dev, struct uio *uio, int flag)
  565: {
  566: 	keyboard_t *kbd;
  567: 	genkbd_softc_t *sc;
  568: 	u_char buffer[KB_BUFSIZE];
  569: 	int len;
  570: 	int error;
  571: 	int s;
  572: 
  573: 	/* wait for input */
  574: 	s = spltty();
  575: 	sc = dev->si_drv1;
  576: 	kbd = kbd_get_keyboard(KBD_INDEX(dev));
  577: 	if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
  578: 		splx(s);
  579: 		return ENXIO;
  580: 	}
  581: 	while (sc->gkb_q.c_cc == 0) {
  582: 		if (flag & IO_NDELAY) {
  583: 			splx(s);
  584: 			return EWOULDBLOCK;
  585: 		}
  586: 		sc->gkb_flags |= KB_ASLEEP;
  587: 		error = tsleep((caddr_t)sc, PCATCH, "kbdrea", 0);
  588: 		kbd = kbd_get_keyboard(KBD_INDEX(dev));
  589: 		if ((kbd == NULL) || !KBD_IS_VALID(kbd)) {
  590: 			splx(s);
  591: 			return ENXIO;	/* our keyboard has gone... */
  592: 		}
  593: 		if (error) {
  594: 			sc->gkb_flags &= ~KB_ASLEEP;
  595: 			splx(s);
  596: 			return error;
  597: 		}
  598: 	}
  599: 	splx(s);
  600: 
  601: 	/* copy as much input as possible */
  602: 	error = 0;
  603: 	while (uio->uio_resid > 0) {
  604: 		len = imin(uio->uio_resid, sizeof(buffer));
  605: 		len = q_to_b(&sc->gkb_q, buffer, len);
  606: 		if (len <= 0)
  607: 			break;
  608: 		error = uiomove(buffer, len, uio);
  609: 		if (error)
  610: 			break;
  611: 	}
  612: 
  613: 	return error;
  614: }
  615: 
  616: static int
  617: genkbdwrite(dev_t dev, struct uio *uio, int flag)
  618: {
  619: 	keyboard_t *kbd;
  620: 
  621: 	kbd = kbd_get_keyboard(KBD_INDEX(dev));
  622: 	if ((kbd == NULL) || !KBD_IS_VALID(kbd))
  623: 		return ENXIO;
  624: 	return ENODEV;
  625: }
  626: 
  627: static int
  628: genkbdioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
  629: {
  630: 	keyboard_t *kbd;
  631: 	int error;
  632: 
  633: 	kbd = kbd_get_keyboard(KBD_INDEX(dev));
  634: 	if ((kbd == NULL) || !KBD_IS_VALID(kbd))
  635: 		return ENXIO;
  636: 	error = (*kbdsw[kbd->kb_index]->ioctl)(kbd, cmd, arg);
  637: 	if (error == ENOIOCTL)
  638: 		error = ENODEV;
  639: 	return error;
  640: }
  641: 
  642: static int
  643: genkbdpoll(dev_t dev, int events, d_thread_t *td)
  644: {
  645: 	keyboard_t *kbd;
  646: 	genkbd_softc_t *sc;
  647: 	int revents;
  648: 	int s;
  649: 
  650: 	revents = 0;
  651: 	s = spltty();
  652: 	sc = dev->si_drv1;
  653: 	kbd = kbd_get_keyboard(KBD_INDEX(dev));
  654: 	if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) {
  655: 		revents =  POLLHUP;	/* the keyboard has gone */
  656: 	} else if (events & (POLLIN | POLLRDNORM)) {
  657: 		if (sc->gkb_q.c_cc > 0)
  658: 			revents = events & (POLLIN | POLLRDNORM);
  659: 		else
  660: 			selrecord(td, &sc->gkb_rsel);
  661: 	}
  662: 	splx(s);
  663: 	return revents;
  664: }
  665: 
  666: static int
  667: genkbd_event(keyboard_t *kbd, int event, void *arg)
  668: {
  669: 	genkbd_softc_t *sc;
  670: 	size_t len;
  671: 	u_char *cp;
  672: 	int mode;
  673: 	int c;
  674: 
  675: 	/* assert(KBD_IS_VALID(kbd)) */
  676: 	sc = (genkbd_softc_t *)arg;
  677: 
  678: 	switch (event) {
  679: 	case KBDIO_KEYINPUT:
  680: 		break;
  681: 	case KBDIO_UNLOADING:
  682: 		/* the keyboard is going... */
  683: 		kbd_release(kbd, (void *)sc);
  684: 		if (sc->gkb_flags & KB_ASLEEP) {
  685: 			sc->gkb_flags &= ~KB_ASLEEP;
  686: 			wakeup((caddr_t)sc);
  687: 		}
  688: 		selwakeup(&sc->gkb_rsel);
  689: 		return 0;
  690: 	default:
  691: 		return EINVAL;
  692: 	}
  693: 
  694: 	/* obtain the current key input mode */
  695: 	if ((*kbdsw[kbd->kb_index]->ioctl)(kbd, KDGKBMODE, (caddr_t)&mode))
  696: 		mode = K_XLATE;
  697: 
  698: 	/* read all pending input */
  699: 	while ((*kbdsw[kbd->kb_index]->check_char)(kbd)) {
  700: 		c = (*kbdsw[kbd->kb_index]->read_char)(kbd, FALSE);
  701: 		if (c == NOKEY)
  702: 			continue;
  703: 		if (c == ERRKEY)	/* XXX: ring bell? */
  704: 			continue;
  705: 		if (!KBD_IS_BUSY(kbd))
  706: 			/* the device is not open, discard the input */
  707: 			continue;
  708: 
  709: 		/* store the byte as is for K_RAW and K_CODE modes */
  710: 		if (mode != K_XLATE) {
  711: 			putc(KEYCHAR(c), &sc->gkb_q);
  712: 			continue;
  713: 		}
  714: 
  715: 		/* K_XLATE */
  716: 		if (c & RELKEY)	/* key release is ignored */
  717: 			continue;
  718: 
  719: 		/* process special keys; most of them are just ignored... */
  720: 		if (c & SPCLKEY) {
  721: 			switch (KEYCHAR(c)) {
  722: 			default:
  723: 				/* ignore them... */
  724: 				continue;
  725: 			case BTAB:	/* a backtab: ESC [ Z */
  726: 				putc(0x1b, &sc->gkb_q);
  727: 				putc('[', &sc->gkb_q);
  728: 				putc('Z', &sc->gkb_q);
  729: 				continue;
  730: 			}
  731: 		}
  732: 
  733: 		/* normal chars, normal chars with the META, function keys */
  734: 		switch (KEYFLAGS(c)) {
  735: 		case 0:			/* a normal char */
  736: 			putc(KEYCHAR(c), &sc->gkb_q);
  737: 			break;
  738: 		case MKEY:		/* the META flag: prepend ESC */
  739: 			putc(0x1b, &sc->gkb_q);
  740: 			putc(KEYCHAR(c), &sc->gkb_q);
  741: 			break;
  742: 		case FKEY | SPCLKEY:	/* a function key, return string */
  743: 			cp = (*kbdsw[kbd->kb_index]->get_fkeystr)(kbd,
  744: 							KEYCHAR(c), &len);
  745: 			if (cp != NULL) {
  746: 				while (len-- >  0)
  747: 					putc(*cp++, &sc->gkb_q);
  748: 			}
  749: 			break;
  750: 		}
  751: 	}
  752: 
  753: 	/* wake up sleeping/polling processes */
  754: 	if (sc->gkb_q.c_cc > 0) {
  755: 		if (sc->gkb_flags & KB_ASLEEP) {
  756: 			sc->gkb_flags &= ~KB_ASLEEP;
  757: 			wakeup((caddr_t)sc);
  758: 		}
  759: 		selwakeup(&sc->gkb_rsel);
  760: 	}
  761: 
  762: 	return 0;
  763: }
  764: 
  765: #endif /* KBD_INSTALL_CDEV */
  766: 
  767: /*
  768:  * Generic low-level keyboard functions
  769:  * The low-level functions in the keyboard subdriver may use these
  770:  * functions.
  771:  */
  772: 
  773: int
  774: genkbd_commonioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
  775: {
  776: 	keyarg_t *keyp;
  777: 	fkeyarg_t *fkeyp;
  778: 	int s;
  779: 	int i;
  780: 
  781: 	s = spltty();
  782: 	switch (cmd) {
  783: 
  784: 	case KDGKBINFO:		/* get keyboard information */
  785: 		((keyboard_info_t *)arg)->kb_index = kbd->kb_index;
  786: 		i = imin(strlen(kbd->kb_name) + 1,
  787: 			 sizeof(((keyboard_info_t *)arg)->kb_name));
  788: 		bcopy(kbd->kb_name, ((keyboard_info_t *)arg)->kb_name, i);
  789: 		((keyboard_info_t *)arg)->kb_unit = kbd->kb_unit;
  790: 		((keyboard_info_t *)arg)->kb_type = kbd->kb_type;
  791: 		((keyboard_info_t *)arg)->kb_config = kbd->kb_config;
  792: 		((keyboard_info_t *)arg)->kb_flags = kbd->kb_flags;
  793: 		break;
  794: 
  795: 	case KDGKBTYPE:		/* get keyboard type */
  796: 		*(int *)arg = kbd->kb_type;
  797: 		break;
  798: 
  799: 	case KDGETREPEAT:	/* get keyboard repeat rate */
  800: 		((int *)arg)[0] = kbd->kb_delay1;
  801: 		((int *)arg)[1] = kbd->kb_delay2; 
  802: 		break;
  803: 
  804: 	case GIO_KEYMAP:	/* get keyboard translation table */
  805: 		bcopy(kbd->kb_keymap, arg, sizeof(*kbd->kb_keymap));
  806: 		break;
  807: 	case PIO_KEYMAP:	/* set keyboard translation table */
  808: #ifndef KBD_DISABLE_KEYMAP_LOAD
  809: 		bzero(kbd->kb_accentmap, sizeof(*kbd->kb_accentmap));
  810: 		bcopy(arg, kbd->kb_keymap, sizeof(*kbd->kb_keymap));
  811: 		break;
  812: #else
  813: 		splx(s);
  814: 		return ENODEV;
  815: #endif
  816: 
  817: 	case GIO_KEYMAPENT:	/* get keyboard translation table entry */
  818: 		keyp = (keyarg_t *)arg;
  819: 		if (keyp->keynum >= sizeof(kbd->kb_keymap->key)
  820: 					/sizeof(kbd->kb_keymap->key[0])) {
  821: 			splx(s);
  822: 			return EINVAL;
  823: 		}
  824: 		bcopy(&kbd->kb_keymap->key[keyp->keynum], &keyp->key,
  825: 		      sizeof(keyp->key));
  826: 		break;
  827: 	case PIO_KEYMAPENT:	/* set keyboard translation table entry */
  828: #ifndef KBD_DISABLE_KEYMAP_LOAD
  829: 		keyp = (keyarg_t *)arg;
  830: 		if (keyp->keynum >= sizeof(kbd->kb_keymap->key)
  831: 					/sizeof(kbd->kb_keymap->key[0])) {
  832: 			splx(s);
  833: 			return EINVAL;
  834: 		}
  835: 		bcopy(&keyp->key, &kbd->kb_keymap->key[keyp->keynum],
  836: 		      sizeof(keyp->key));
  837: 		break;
  838: #else
  839: 		splx(s);
  840: 		return ENODEV;
  841: #endif
  842: 
  843: 	case GIO_DEADKEYMAP:	/* get accent key translation table */
  844: 		bcopy(kbd->kb_accentmap, arg, sizeof(*kbd->kb_accentmap));
  845: 		break;
  846: 	case PIO_DEADKEYMAP:	/* set accent key translation table */
  847: #ifndef KBD_DISABLE_KEYMAP_LOAD
  848: 		bcopy(arg, kbd->kb_accentmap, sizeof(*kbd->kb_accentmap));
  849: 		break;
  850: #else
  851: 		splx(s);
  852: 		return ENODEV;
  853: #endif
  854: 
  855: 	case GETFKEY:		/* get functionkey string */
  856: 		fkeyp = (fkeyarg_t *)arg;
  857: 		if (fkeyp->keynum >= kbd->kb_fkeytab_size) {
  858: 			splx(s);
  859: 			return EINVAL;
  860: 		}
  861: 		bcopy(kbd->kb_fkeytab[fkeyp->keynum].str, fkeyp->keydef,
  862: 		      kbd->kb_fkeytab[fkeyp->keynum].len);
  863: 		fkeyp->flen = kbd->kb_fkeytab[fkeyp->keynum].len;
  864: 		break;
  865: 	case SETFKEY:		/* set functionkey string */
  866: #ifndef KBD_DISABLE_KEYMAP_LOAD
  867: 		fkeyp = (fkeyarg_t *)arg;
  868: 		if (fkeyp->keynum >= kbd->kb_fkeytab_size) {
  869: 			splx(s);
  870: 			return EINVAL;
  871: 		}
  872: 		kbd->kb_fkeytab[fkeyp->keynum].len = imin(fkeyp->flen, MAXFK);
  873: 		bcopy(fkeyp->keydef, kbd->kb_fkeytab[fkeyp->keynum].str,
  874: 		      kbd->kb_fkeytab[fkeyp->keynum].len);
  875: 		break;
  876: #else
  877: 		splx(s);
  878: 		return ENODEV;
  879: #endif
  880: 
  881: 	default:
  882: 		splx(s);
  883: 		return ENOIOCTL;
  884: 	}
  885: 
  886: 	splx(s);
  887: 	return 0;
  888: }
  889: 
  890: /* get a pointer to the string associated with the given function key */
  891: u_char
  892: *genkbd_get_fkeystr(keyboard_t *kbd, int fkey, size_t *len)
  893: {
  894: 	if (kbd == NULL)
  895: 		return NULL;
  896: 	fkey -= F_FN;
  897: 	if (fkey > kbd->kb_fkeytab_size)
  898: 		return NULL;
  899: 	*len = kbd->kb_fkeytab[fkey].len;
  900: 	return kbd->kb_fkeytab[fkey].str;
  901: }
  902: 
  903: /* diagnostic dump */
  904: static char
  905: *get_kbd_type_name(int type)
  906: {
  907: 	static struct {
  908: 		int type;
  909: 		char *name;
  910: 	} name_table[] = {
  911: 		{ KB_84,	"AT 84" },
  912: 		{ KB_101,	"AT 101/102" },
  913: 		{ KB_OTHER,	"generic" },
  914: 	};
  915: 	int i;
  916: 
  917: 	for (i = 0; i < sizeof(name_table)/sizeof(name_table[0]); ++i) {
  918: 		if (type == name_table[i].type)
  919: 			return name_table[i].name;
  920: 	}
  921: 	return "unknown";
  922: }
  923: 
  924: void
  925: genkbd_diag(keyboard_t *kbd, int level)
  926: {
  927: 	if (level > 0) {
  928: 		printf("kbd%d: %s%d, %s (%d), config:0x%x, flags:0x%x", 
  929: 		       kbd->kb_index, kbd->kb_name, kbd->kb_unit,
  930: 		       get_kbd_type_name(kbd->kb_type), kbd->kb_type,
  931: 		       kbd->kb_config, kbd->kb_flags);
  932: 		if (kbd->kb_io_base > 0)
  933: 			printf(", port:0x%x-0x%x", kbd->kb_io_base, 
  934: 			       kbd->kb_io_base + kbd->kb_io_size - 1);
  935: 		printf("\n");
  936: 	}
  937: }
  938: 
  939: #define set_lockkey_state(k, s, l)				\
  940: 	if (!((s) & l ## DOWN)) {				\
  941: 		int i;						\
  942: 		(s) |= l ## DOWN;				\
  943: 		(s) ^= l ## ED;					\
  944: 		i = (s) & LOCK_MASK;				\
  945: 		(*kbdsw[(k)->kb_index]->ioctl)((k), KDSETLED, (caddr_t)&i); \
  946: 	}
  947: 
  948: static u_int
  949: save_accent_key(keyboard_t *kbd, u_int key, int *accents)
  950: {
  951: 	int i;
  952: 
  953: 	/* make an index into the accent map */
  954: 	i = key - F_ACC + 1;
  955: 	if ((i > kbd->kb_accentmap->n_accs)
  956: 	    || (kbd->kb_accentmap->acc[i - 1].accchar == 0)) {
  957: 		/* the index is out of range or pointing to an empty entry */
  958: 		*accents = 0;
  959: 		return ERRKEY;
  960: 	}
  961: 
  962: 	/* 
  963: 	 * If the same accent key has been hit twice, produce the accent char
  964: 	 * itself.
  965: 	 */
  966: 	if (i == *accents) {
  967: 		key = kbd->kb_accentmap->acc[i - 1].accchar;
  968: 		*accents = 0;
  969: 		return key;
  970: 	}
  971: 
  972: 	/* remember the index and wait for the next key  */
  973: 	*accents = i; 
  974: 	return NOKEY;
  975: }
  976: 
  977: static u_int
  978: make_accent_char(keyboard_t *kbd, u_int ch, int *accents)
  979: {
  980: 	struct acc_t *acc;
  981: 	int i;
  982: 
  983: 	acc = &kbd->kb_accentmap->acc[*accents - 1];
  984: 	*accents = 0;
  985: 
  986: 	/* 
  987: 	 * If the accent key is followed by the space key,
  988: 	 * produce the accent char itself.
  989: 	 */
  990: 	if (ch == ' ')
  991: 		return acc->accchar;
  992: 
  993: 	/* scan the accent map */
  994: 	for (i = 0; i < NUM_ACCENTCHARS; ++i) {
  995: 		if (acc->map[i][0] == 0)	/* end of table */
  996: 			break;
  997: 		if (acc->map[i][0] == ch)
  998: 			return acc->map[i][1];
  999: 	}
 1000: 	/* this char cannot be accented... */
 1001: 	return ERRKEY;
 1002: }
 1003: 
 1004: int
 1005: genkbd_keyaction(keyboard_t *kbd, int keycode, int up, int *shiftstate,
 1006: 		 int *accents)
 1007: {
 1008: 	struct keyent_t *key;
 1009: 	int state = *shiftstate;
 1010: 	int action;
 1011: 	int f;
 1012: 	int i;
 1013: 
 1014: 	i = keycode;
 1015: 	f = state & (AGRS | ALKED);
 1016: 	if ((f == AGRS1) || (f == AGRS2) || (f == ALKED))
 1017: 		i += ALTGR_OFFSET;
 1018: 	key = &kbd->kb_keymap->key[i];
 1019: 	i = ((state & SHIFTS) ? 1 : 0)
 1020: 	    | ((state & CTLS) ? 2 : 0)
 1021: 	    | ((state & ALTS) ? 4 : 0);
 1022: 	if (((key->flgs & FLAG_LOCK_C) && (state & CLKED))
 1023: 		|| ((key->flgs & FLAG_LOCK_N) && (state & NLKED)) )
 1024: 		i ^= 1;
 1025: 
 1026: 	if (up) {	/* break: key released */
 1027: 		action = kbd->kb_lastact[keycode];
 1028: 		kbd->kb_lastact[keycode] = NOP;
 1029: 		switch (action) {
 1030: 		case LSHA:
 1031: 			if (state & SHIFTAON) {
 1032: 				set_lockkey_state(kbd, state, ALK);
 1033: 				state &= ~ALKDOWN;
 1034: 			}
 1035: 			action = LSH;
 1036: 			/* FALL THROUGH */
 1037: 		case LSH:
 1038: 			state &= ~SHIFTS1;
 1039: 			break;
 1040: 		case RSHA:
 1041: 			if (state & SHIFTAON) {
 1042: 				set_lockkey_state(kbd, state, ALK);
 1043: 				state &= ~ALKDOWN;
 1044: 			}
 1045: 			action = RSH;
 1046: 			/* FALL THROUGH */
 1047: 		case RSH:
 1048: 			state &= ~SHIFTS2;
 1049: 			break;
 1050: 		case LCTRA:
 1051: 			if (state & SHIFTAON) {
 1052: 				set_lockkey_state(kbd, state, ALK);
 1053: 				state &= ~ALKDOWN;
 1054: 			}
 1055: 			action = LCTR;
 1056: 			/* FALL THROUGH */
 1057: 		case LCTR:
 1058: 			state &= ~CTLS1;
 1059: 			break;
 1060: 		case RCTRA:
 1061: 			if (state & SHIFTAON) {
 1062: 				set_lockkey_state(kbd, state, ALK);
 1063: 				state &= ~ALKDOWN;
 1064: 			}
 1065: 			action = RCTR;
 1066: 			/* FALL THROUGH */
 1067: 		case RCTR:
 1068: 			state &= ~CTLS2;
 1069: 			break;
 1070: 		case LALTA:
 1071: 			if (state & SHIFTAON) {
 1072: 				set_lockkey_state(kbd, state, ALK);
 1073: 				state &= ~ALKDOWN;
 1074: 			}
 1075: 			action = LALT;
 1076: 			/* FALL THROUGH */
 1077: 		case LALT:
 1078: 			state &= ~ALTS1;
 1079: 			break;
 1080: 		case RALTA:
 1081: 			if (state & SHIFTAON) {
 1082: 				set_lockkey_state(kbd, state, ALK);
 1083: 				state &= ~ALKDOWN;
 1084: 			}
 1085: 			action = RALT;
 1086: 			/* FALL THROUGH */
 1087: 		case RALT:
 1088: 			state &= ~ALTS2;
 1089: 			break;
 1090: 		case ASH:
 1091: 			state &= ~AGRS1;
 1092: 			break;
 1093: 		case META:
 1094: 			state &= ~METAS1;
 1095: 			break;
 1096: 		case NLK:
 1097: 			state &= ~NLKDOWN;
 1098: 			break;
 1099: 		case CLK:
 1100: #ifndef PC98
 1101: 			state &= ~CLKDOWN;
 1102: #else
 1103: 			state &= ~CLKED;
 1104: 			i = state & LOCK_MASK;
 1105: 			(*kbdsw[kbd->kb_index]->ioctl)(kbd, KDSETLED,
 1106: 						       (caddr_t)&i);
 1107: #endif
 1108: 			break;
 1109: 		case SLK:
 1110: 			state &= ~SLKDOWN;
 1111: 			break;
 1112: 		case ALK:
 1113: 			state &= ~ALKDOWN;
 1114: 			break;
 1115: 		case NOP:
 1116: 			/* release events of regular keys are not reported */
 1117: 			*shiftstate &= ~SHIFTAON;
 1118: 			return NOKEY;
 1119: 		}
 1120: 		*shiftstate = state & ~SHIFTAON;
 1121: 		return (SPCLKEY | RELKEY | action);
 1122: 	} else {	/* make: key pressed */
 1123: 		action = key->map[i];
 1124: 		state &= ~SHIFTAON;
 1125: 		if (key->spcl & (0x80 >> i)) {
 1126: 			/* special keys */
 1127: 			if (kbd->kb_lastact[keycode] == NOP)
 1128: 				kbd->kb_lastact[keycode] = action;
 1129: 			if (kbd->kb_lastact[keycode] != action)
 1130: 				action = NOP;
 1131: 			switch (action) {
 1132: 			/* LOCKING KEYS */
 1133: 			case NLK:
 1134: 				set_lockkey_state(kbd, state, NLK);
 1135: 				break;
 1136: 			case CLK:
 1137: #ifndef PC98
 1138: 				set_lockkey_state(kbd, state, CLK);
 1139: #else
 1140: 				state |= CLKED;
 1141: 				i = state & LOCK_MASK;
 1142: 				(*kbdsw[kbd->kb_index]->ioctl)(kbd, KDSETLED,
 1143: 							       (caddr_t)&i);
 1144: #endif
 1145: 				break;
 1146: 			case SLK:
 1147: 				set_lockkey_state(kbd, state, SLK);
 1148: 				break;
 1149: 			case ALK:
 1150: 				set_lockkey_state(kbd, state, ALK);
 1151: 				break;
 1152: 			/* NON-LOCKING KEYS */
 1153: 			case SPSC: case RBT:  case SUSP: case STBY:
 1154: 			case DBG:  case NEXT: case PREV: case PNC:
 1155: 			case HALT: case PDWN:
 1156: 				*accents = 0;
 1157: 				break;
 1158: 			case BTAB:
 1159: 				*accents = 0;
 1160: 				action |= BKEY;
 1161: 				break;
 1162: 			case LSHA:
 1163: 				state |= SHIFTAON;
 1164: 				action = LSH;
 1165: 				/* FALL THROUGH */
 1166: 			case LSH:
 1167: 				state |= SHIFTS1;
 1168: 				break;
 1169: 			case RSHA:
 1170: 				state |= SHIFTAON;
 1171: 				action = RSH;
 1172: 				/* FALL THROUGH */
 1173: 			case RSH:
 1174: 				state |= SHIFTS2;
 1175: 				break;
 1176: 			case LCTRA:
 1177: 				state |= SHIFTAON;
 1178: 				action = LCTR;
 1179: 				/* FALL THROUGH */
 1180: 			case LCTR:
 1181: 				state |= CTLS1;
 1182: 				break;
 1183: 			case RCTRA:
 1184: 				state |= SHIFTAON;
 1185: 				action = RCTR;
 1186: 				/* FALL THROUGH */
 1187: 			case RCTR:
 1188: 				state |= CTLS2;
 1189: 				break;
 1190: 			case LALTA:
 1191: 				state |= SHIFTAON;
 1192: 				action = LALT;
 1193: 				/* FALL THROUGH */
 1194: 			case LALT:
 1195: 				state |= ALTS1;
 1196: 				break;
 1197: 			case RALTA:
 1198: 				state |= SHIFTAON;
 1199: 				action = RALT;
 1200: 				/* FALL THROUGH */
 1201: 			case RALT:
 1202: 				state |= ALTS2;
 1203: 				break;
 1204: 			case ASH:
 1205: 				state |= AGRS1;
 1206: 				break;
 1207: 			case META:
 1208: 				state |= METAS1;
 1209: 				break;
 1210: 			case NOP:
 1211: 				*shiftstate = state;
 1212: 				return NOKEY;
 1213: 			default:
 1214: 				/* is this an accent (dead) key? */
 1215: 				*shiftstate = state;
 1216: 				if (action >= F_ACC && action <= L_ACC) {
 1217: 					action = save_accent_key(kbd, action,
 1218: 								 accents);
 1219: 					switch (action) {
 1220: 					case NOKEY:
 1221: 					case ERRKEY:
 1222: 						return action;
 1223: 					default:
 1224: 						if (state & METAS)
 1225: 							return (action | MKEY);
 1226: 						else
 1227: 							return action;
 1228: 					}
 1229: 					/* NOT REACHED */
 1230: 				}
 1231: 				/* other special keys */
 1232: 				if (*accents > 0) {
 1233: 					*accents = 0;
 1234: 					return ERRKEY;
 1235: 				}
 1236: 				if (action >= F_FN && action <= L_FN)
 1237: 					action |= FKEY;
 1238: 				/* XXX: return fkey string for the FKEY? */
 1239: 				return (SPCLKEY | action);
 1240: 			}
 1241: 			*shiftstate = state;
 1242: 			return (SPCLKEY | action);
 1243: 		} else {
 1244: 			/* regular keys */
 1245: 			kbd->kb_lastact[keycode] = NOP;
 1246: 			*shiftstate = state;
 1247: 			if (*accents > 0) {
 1248: 				/* make an accented char */
 1249: 				action = make_accent_char(kbd, action, accents);
 1250: 				if (action == ERRKEY)
 1251: 					return action;
 1252: 			}
 1253: 			if (state & METAS)
 1254: 				action |= MKEY;
 1255: 			return action;
 1256: 		}
 1257: 	}
 1258: 	/* NOT REACHED */
 1259: }