File:  [DragonFly] / src / sys / i386 / i386 / Attic / pmap.c
Revision 1.33: download - view: text, annotated - select for diffs
Thu Apr 1 17:58:00 2004 UTC (10 years, 5 months ago) by dillon
Branches: MAIN
CVS tags: HEAD
Enhance the pmap_kenter*() API and friends, separating out entries which
only need invalidation on the local cpu against entries which need invalidation
across the entire system, and provide a synchronization abstraction.

Enhance sf_buf_alloc() and friends to allow the caller to specify whether the
sf_buf's kernel mapping is going to be used on just the current cpu or
whether it needs to be valid across all cpus.  This is done by maintaining
a cpumask of known-synchronized cpus in the struct sf_buf

Optimize sf_buf_alloc() and friends by removing both TAILQ operations in the
critical path.  TAILQ operations to remove the sf_buf from the free queue
are now done in a lazy fashion.  Most sf_buf operations allocate a buf,
work on it, and free it, so why waste time moving the sf_buf off the freelist
if we are only going to move back onto the free list a microsecond later?

Fix a bug in sf_buf_alloc() code as it was being used by the PIPE code.
sf_buf_alloc() was unconditionally using PCATCH in its tsleep() call, which
is only correct when called from the sendfile() interface.

Optimize the PIPE code to require only local cpu_invlpg()'s when mapping
sf_buf's, greatly reducing the number of IPIs required.  On a DELL-2550,
a pipe test which explicitly blows out the sf_buf caching by using huge
buffers improves from 350 to 550 MBytes/sec.  However, note that buildworld
times were not found to have changed.

Replace the PIPE code's custom 'struct pipemapping' structure with a
struct xio and use the XIO API functions rather then its own.

/*
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 * Copyright (c) 1994 John S. Dyson
 * All rights reserved.
 * Copyright (c) 1994 David Greenman
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department and William Jolitz of UUNET Technologies Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
 * $DragonFly: src/sys/i386/i386/pmap.c,v 1.33 2004/04/01 17:58:00 dillon Exp $
 */

/*
 *	Manages physical address maps.
 *
 *	In addition to hardware address maps, this
 *	module is called upon to provide software-use-only
 *	maps which may or may not be stored in the same
 *	form as hardware maps.  These pseudo-maps are
 *	used to store intermediate results from copy
 *	operations to and from address spaces.
 *
 *	Since the information managed by this module is
 *	also stored by the logical address mapping module,
 *	this module may throw away valid virtual-to-physical
 *	mappings at almost any time.  However, invalidations
 *	of virtual-to-physical mappings must be done as
 *	requested.
 *
 *	In order to cope with hardware architectures which
 *	make virtual-to-physical map invalidates expensive,
 *	this module may delay invalidate or reduced protection
 *	operations until such time as they are actually
 *	necessary.  This module is given full information as
 *	to which processors are currently using which maps,
 *	and to when physical maps must be made correct.
 */

#include "opt_disable_pse.h"
#include "opt_pmap.h"
#include "opt_msgbuf.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/vmmeter.h>
#include <sys/mman.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_zone.h>

#include <sys/user.h>
#include <sys/thread2.h>

#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#if defined(SMP) || defined(APIC_IO)
#include <machine/smp.h>
#include <machine/apicreg.h>
#endif /* SMP || APIC_IO */
#include <machine/globaldata.h>
#include <machine/pmap.h>
#include <machine/pmap_inval.h>

#define PMAP_KEEP_PDIRS
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif

#if defined(DIAGNOSTIC)
#define PMAP_DIAGNOSTIC
#endif

#define MINPV 2048

#if !defined(PMAP_DIAGNOSTIC)
#define PMAP_INLINE __inline
#else
#define PMAP_INLINE
#endif

/*
 * Get PDEs and PTEs for user/kernel address space
 */
#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])

#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)


/*
 * Given a map and a machine independent protection code,
 * convert to a vax protection code.
 */
#define pte_prot(m, p)	(protection_codes[p])
static int protection_codes[8];

static struct pmap kernel_pmap_store;
pmap_t kernel_pmap;

vm_paddr_t avail_start;	/* PA of first available physical page */
vm_paddr_t avail_end;		/* PA of last available physical page */
vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
static int pgeflag;		/* PG_G or-in */
static int pseflag;		/* PG_PS or-in */

static vm_object_t kptobj;

static int nkpt;
vm_offset_t kernel_vm_end;

/*
 * Data for the pv entry allocation mechanism
 */
static vm_zone_t pvzone;
static struct vm_zone pvzone_store;
static struct vm_object pvzone_obj;
static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
static int pmap_pagedaemon_waken = 0;
static struct pv_entry *pvinit;

/*
 * All those kernel PT submaps that BSD is so fond of
 */
pt_entry_t *CMAP1 = 0, *ptmmap;
caddr_t CADDR1 = 0, ptvmmap = 0;
static pt_entry_t *msgbufmap;
struct msgbuf *msgbufp=0;

/*
 * Crashdump maps.
 */
static pt_entry_t *pt_crashdumpmap;
static caddr_t crashdumpmap;

extern pt_entry_t *SMPpt;

static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
static unsigned * get_ptbase (pmap_t pmap);
static pv_entry_t get_pv_entry (void);
static void	i386_protection_init (void);
static __inline void	pmap_changebit (vm_page_t m, int bit, boolean_t setem);

static void	pmap_remove_all (vm_page_t m);
static vm_page_t pmap_enter_quick (pmap_t pmap, vm_offset_t va,
				      vm_page_t m, vm_page_t mpte);
static int pmap_remove_pte (struct pmap *pmap, unsigned *ptq, 
				vm_offset_t sva, pmap_inval_info_t info);
static void pmap_remove_page (struct pmap *pmap, 
				vm_offset_t va, pmap_inval_info_t info);
static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
				vm_offset_t va, pmap_inval_info_t info);
static boolean_t pmap_testbit (vm_page_t m, int bit);
static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
		vm_page_t mpte, vm_page_t m);

static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);

static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
static vm_page_t _pmap_allocpte (pmap_t pmap, unsigned ptepindex);
static unsigned * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
static vm_offset_t pmap_kmem_choose(vm_offset_t addr);

static unsigned pdir4mb;

/*
 * Move the kernel virtual free pointer to the next
 * 4MB.  This is used to help improve performance
 * by using a large (4MB) page for much of the kernel
 * (.text, .data, .bss)
 */
static vm_offset_t
pmap_kmem_choose(vm_offset_t addr)
{
	vm_offset_t newaddr = addr;
#ifndef DISABLE_PSE
	if (cpu_feature & CPUID_PSE) {
		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
	}
#endif
	return newaddr;
}

/*
 * pmap_pte:
 *
 *	Extract the page table entry associated with the given map/virtual
 *	pair.
 *
 *	This function may NOT be called from an interrupt.
 */
PMAP_INLINE unsigned *
pmap_pte(pmap_t pmap, vm_offset_t va)
{
	unsigned *pdeaddr;

	if (pmap) {
		pdeaddr = (unsigned *) pmap_pde(pmap, va);
		if (*pdeaddr & PG_PS)
			return pdeaddr;
		if (*pdeaddr) {
			return get_ptbase(pmap) + i386_btop(va);
		}
	}
	return (0);
}

/*
 * pmap_pte_quick:
 *
 *	Super fast pmap_pte routine best used when scanning the pv lists.
 *	This eliminates many course-grained invltlb calls.  Note that many of
 *	the pv list scans are across different pmaps and it is very wasteful
 *	to do an entire invltlb when checking a single mapping.
 *
 *	Should only be called while splvm() is held or from a critical
 *	section.
 */
static unsigned * 
pmap_pte_quick(pmap_t pmap, vm_offset_t va)
{
	struct mdglobaldata *gd = mdcpu;
	unsigned pde, newpf;

	if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
		unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
		unsigned index = i386_btop(va);
		/* are we current address space or kernel? */
		if ((pmap == kernel_pmap) ||
			(frame == (((unsigned) PTDpde) & PG_FRAME))) {
			return (unsigned *) PTmap + index;
		}
		newpf = pde & PG_FRAME;
		if ( ((* (unsigned *) gd->gd_PMAP1) & PG_FRAME) != newpf) {
			* (unsigned *) gd->gd_PMAP1 = newpf | PG_RW | PG_V;
			cpu_invlpg(gd->gd_PADDR1);
		}
		return gd->gd_PADDR1 + ((unsigned) index & (NPTEPG - 1));
	}
	return (0);
}


/*
 *	Bootstrap the system enough to run with virtual memory.
 *
 *	On the i386 this is called after mapping has already been enabled
 *	and just syncs the pmap module with what has already been done.
 *	[We can't call it easily with mapping off since the kernel is not
 *	mapped with PA == VA, hence we would have to relocate every address
 *	from the linked base (virtual) address "KERNBASE" to the actual
 *	(physical) address starting relative to 0]
 */
void
pmap_bootstrap(firstaddr, loadaddr)
	vm_paddr_t firstaddr;
	vm_paddr_t loadaddr;
{
	vm_offset_t va;
	pt_entry_t *pte;
	struct mdglobaldata *gd;
	int i;

	avail_start = firstaddr;

	/*
	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
	 * large. It should instead be correctly calculated in locore.s and
	 * not based on 'first' (which is a physical address, not a virtual
	 * address, for the start of unused physical memory). The kernel
	 * page tables are NOT double mapped and thus should not be included
	 * in this calculation.
	 */
	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
	virtual_avail = pmap_kmem_choose(virtual_avail);

	virtual_end = VM_MAX_KERNEL_ADDRESS;

	/*
	 * Initialize protection array.
	 */
	i386_protection_init();

	/*
	 * The kernel's pmap is statically allocated so we don't have to use
	 * pmap_create, which is unlikely to work correctly at this part of
	 * the boot sequence (XXX and which no longer exists).
	 */
	kernel_pmap = &kernel_pmap_store;

	kernel_pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (u_int)IdlePTD);
	kernel_pmap->pm_count = 1;
	kernel_pmap->pm_active = (cpumask_t)-1;	/* don't allow deactivation */
	TAILQ_INIT(&kernel_pmap->pm_pvlist);
	nkpt = NKPT;

	/*
	 * Reserve some special page table entries/VA space for temporary
	 * mapping of pages.
	 */
#define	SYSMAP(c, p, v, n)	\
	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);

	va = virtual_avail;
	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);

	/*
	 * CMAP1/CMAP2 are used for zeroing and copying pages.
	 */
	SYSMAP(caddr_t, CMAP1, CADDR1, 1)

	/*
	 * Crashdump maps.
	 */
	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);

	/*
	 * ptvmmap is used for reading arbitrary physical pages via
	 * /dev/mem.
	 */
	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)

	/*
	 * msgbufp is used to map the system message buffer.
	 * XXX msgbufmap is not used.
	 */
	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
	       atop(round_page(MSGBUF_SIZE)))

	virtual_avail = va;

	*(int *) CMAP1 = 0;
	for (i = 0; i < NKPT; i++)
		PTD[i] = 0;

	/*
	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
	 * cases rather then invl1pg.  Actually, I don't even know why it
	 * works under UP because self-referential page table mappings
	 */
#ifdef SMP
	pgeflag = 0;
#else
	if (cpu_feature & CPUID_PGE)
		pgeflag = PG_G;
#endif
	
/*
 * Initialize the 4MB page size flag
 */
	pseflag = 0;
/*
 * The 4MB page version of the initial
 * kernel page mapping.
 */
	pdir4mb = 0;

#if !defined(DISABLE_PSE)
	if (cpu_feature & CPUID_PSE) {
		unsigned ptditmp;
		/*
		 * Note that we have enabled PSE mode
		 */
		pseflag = PG_PS;
		ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
		ptditmp &= ~(NBPDR - 1);
		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
		pdir4mb = ptditmp;

#ifndef SMP
		/*
		 * Enable the PSE mode.  If we are SMP we can't do this
		 * now because the APs will not be able to use it when
		 * they boot up.
		 */
		load_cr4(rcr4() | CR4_PSE);

		/*
		 * We can do the mapping here for the single processor
		 * case.  We simply ignore the old page table page from
		 * now on.
		 */
		/*
		 * For SMP, we still need 4K pages to bootstrap APs,
		 * PSE will be enabled as soon as all APs are up.
		 */
		PTD[KPTDI] = (pd_entry_t)ptditmp;
		kernel_pmap->pm_pdir[KPTDI] = (pd_entry_t)ptditmp;
		cpu_invltlb();
#endif
	}
#endif
#ifdef APIC_IO
	if (cpu_apic_address == 0)
		panic("pmap_bootstrap: no local apic!");

	/* local apic is mapped on last page */
	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
	    (cpu_apic_address & PG_FRAME));
#endif

	/* BSP does this itself, AP's get it pre-set */
	gd = &CPU_prvspace[0].mdglobaldata;
	gd->gd_CMAP1 = &SMPpt[1];
	gd->gd_CMAP2 = &SMPpt[2];
	gd->gd_CMAP3 = &SMPpt[3];
	gd->gd_PMAP1 = &SMPpt[4];
	gd->gd_CADDR1 = CPU_prvspace[0].CPAGE1;
	gd->gd_CADDR2 = CPU_prvspace[0].CPAGE2;
	gd->gd_CADDR3 = CPU_prvspace[0].CPAGE3;
	gd->gd_PADDR1 = (unsigned *)CPU_prvspace[0].PPAGE1;

	cpu_invltlb();
}

#ifdef SMP
/*
 * Set 4mb pdir for mp startup
 */
void
pmap_set_opt(void)
{
	if (pseflag && (cpu_feature & CPUID_PSE)) {
		load_cr4(rcr4() | CR4_PSE);
		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
			kernel_pmap->pm_pdir[KPTDI] =
			    PTD[KPTDI] = (pd_entry_t)pdir4mb;
			cpu_invltlb();
		}
	}
}
#endif

/*
 *	Initialize the pmap module.
 *	Called by vm_init, to initialize any structures that the pmap
 *	system needs to map virtual memory.
 *	pmap_init has been enhanced to support in a fairly consistant
 *	way, discontiguous physical memory.
 */
void
pmap_init(phys_start, phys_end)
	vm_paddr_t phys_start, phys_end;
{
	int i;
	int initial_pvs;

	/*
	 * object for kernel page table pages
	 */
	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);

	/*
	 * Allocate memory for random pmap data structures.  Includes the
	 * pv_head_table.
	 */

	for(i = 0; i < vm_page_array_size; i++) {
		vm_page_t m;

		m = &vm_page_array[i];
		TAILQ_INIT(&m->md.pv_list);
		m->md.pv_list_count = 0;
	}

	/*
	 * init the pv free list
	 */
	initial_pvs = vm_page_array_size;
	if (initial_pvs < MINPV)
		initial_pvs = MINPV;
	pvzone = &pvzone_store;
	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
		initial_pvs * sizeof (struct pv_entry));
	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
	    vm_page_array_size);

	/*
	 * Now it is safe to enable pv_table recording.
	 */
	pmap_initialized = TRUE;
}

/*
 * Initialize the address space (zone) for the pv_entries.  Set a
 * high water mark so that the system can recover from excessive
 * numbers of pv entries.
 */
void
pmap_init2()
{
	int shpgperproc = PMAP_SHPGPERPROC;

	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
	pv_entry_high_water = 9 * (pv_entry_max / 10);
	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
}


/***************************************************
 * Low level helper routines.....
 ***************************************************/

#if defined(PMAP_DIAGNOSTIC)

/*
 * This code checks for non-writeable/modified pages.
 * This should be an invalid condition.
 */
static int
pmap_nw_modified(pt_entry_t ptea)
{
	int pte;

	pte = (int) ptea;

	if ((pte & (PG_M|PG_RW)) == PG_M)
		return 1;
	else
		return 0;
}
#endif


/*
 * this routine defines the region(s) of memory that should
 * not be tested for the modified bit.
 */
static PMAP_INLINE int
pmap_track_modified(vm_offset_t va)
{
	if ((va < clean_sva) || (va >= clean_eva)) 
		return 1;
	else
		return 0;
}

static unsigned *
get_ptbase(pmap_t pmap)
{
	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
	struct globaldata *gd = mycpu;

	/* are we current address space or kernel? */
	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
		return (unsigned *) PTmap;
	}

	/* otherwise, we are alternate address space */
	KKASSERT(gd->gd_intr_nesting_level == 0 && (gd->gd_curthread->td_flags & TDF_INTTHREAD) == 0);

	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
		APTDpde = (pd_entry_t)(frame | PG_RW | PG_V);
		/* The page directory is not shared between CPUs */
		cpu_invltlb();
	}
	return (unsigned *) APTmap;
}

/*
 * pmap_extract:
 *
 *	Extract the physical page address associated with the map/VA pair.
 *
 *	This function may not be called from an interrupt if the pmap is
 *	not kernel_pmap.
 */
vm_paddr_t 
pmap_extract(pmap_t pmap, vm_offset_t va)
{
	vm_offset_t rtval;
	vm_offset_t pdirindex;

	pdirindex = va >> PDRSHIFT;
	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
		unsigned *pte;
		if ((rtval & PG_PS) != 0) {
			rtval &= ~(NBPDR - 1);
			rtval |= va & (NBPDR - 1);
			return rtval;
		}
		pte = get_ptbase(pmap) + i386_btop(va);
		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
		return rtval;
	}
	return 0;
}

/*
 * Extract user accessible page only, return NULL if the page is not
 * present or if it's current state is not sufficient.  Caller will
 * generally call vm_fault() on failure and try again.
 */
vm_page_t
pmap_extract_vmpage(pmap_t pmap, vm_offset_t va, int prot)
{
	vm_offset_t rtval;
	vm_offset_t pdirindex;

	pdirindex = va >> PDRSHIFT;
	if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
		unsigned *pte;
		vm_page_t m;

		if ((rtval & PG_PS) != 0) {
			if ((rtval & (PG_V|PG_U)) != (PG_V|PG_U))
				return (NULL);
			if ((prot & VM_PROT_WRITE) && (rtval & PG_RW) == 0)
				return (NULL);
			rtval &= ~(NBPDR - 1);
			rtval |= va & (NBPDR - 1);
			m = PHYS_TO_VM_PAGE(rtval);
		} else {
			pte = get_ptbase(pmap) + i386_btop(va);
			if ((*pte & (PG_V|PG_U)) != (PG_V|PG_U))
				return (NULL);
			if ((prot & VM_PROT_WRITE) && (*pte & PG_RW) == 0)
				return (NULL);
			rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
			m = PHYS_TO_VM_PAGE(rtval);
		}
		return(m);
	}
	return (NULL);
}

/***************************************************
 * Low level mapping routines.....
 ***************************************************/

/*
 * add a wired page to the kva
 * note that in order for the mapping to take effect -- you
 * should do a invltlb after doing the pmap_kenter...
 */
void 
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
	unsigned *pte;
	unsigned npte;
	pmap_inval_info info;

	pmap_inval_init(&info);
	pmap_inval_add(&info, kernel_pmap, va);
	npte = pa | PG_RW | PG_V | pgeflag;
	pte = (unsigned *)vtopte(va);
	*pte = npte;
	pmap_inval_flush(&info);
}

void
pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
{
	unsigned *pte;
	unsigned npte;

	npte = pa | PG_RW | PG_V | pgeflag;
	pte = (unsigned *)vtopte(va);
	*pte = npte;
	cpu_invlpg((void *)va);
}

void
pmap_kenter_sync(vm_offset_t va)
{
	pmap_inval_info info;

	pmap_inval_init(&info);
	pmap_inval_add(&info, kernel_pmap, va);
	pmap_inval_flush(&info);
}

void
pmap_kenter_sync_quick(vm_offset_t va)
{
	cpu_invlpg((void *)va);
}

/*
 * remove a page from the kernel pagetables
 */
void
pmap_kremove(vm_offset_t va)
{
	unsigned *pte;
	pmap_inval_info info;

	pmap_inval_init(&info);
	pmap_inval_add(&info, kernel_pmap, va);
	pte = (unsigned *)vtopte(va);
	*pte = 0;
	pmap_inval_flush(&info);
}

void
pmap_kremove_quick(vm_offset_t va)
{
	unsigned *pte;
	pte = (unsigned *)vtopte(va);
	*pte = 0;
	cpu_invlpg((void *)va);
}

/*
 *	Used to map a range of physical addresses into kernel
 *	virtual address space.
 *
 *	For now, VM is already on, we only need to map the
 *	specified memory.
 */
vm_offset_t
pmap_map(vm_offset_t virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
	while (start < end) {
		pmap_kenter(virt, start);
		virt += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	return (virt);
}


/*
 * Add a list of wired pages to the kva
 * this routine is only used for temporary
 * kernel mappings that do not need to have
 * page modification or references recorded.
 * Note that old mappings are simply written
 * over.  The page *must* be wired.
 */
void
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
{
	vm_offset_t end_va;

	end_va = va + count * PAGE_SIZE;
		
	while (va < end_va) {
		unsigned *pte;

		pte = (unsigned *)vtopte(va);
		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
		cpu_invlpg((void *)va);
		va += PAGE_SIZE;
		m++;
	}
#ifdef SMP
	smp_invltlb();	/* XXX */
#endif
}

/*
 * this routine jerks page mappings from the
 * kernel -- it is meant only for temporary mappings.
 */
void
pmap_qremove(vm_offset_t va, int count)
{
	vm_offset_t end_va;

	end_va = va + count*PAGE_SIZE;

	while (va < end_va) {
		unsigned *pte;

		pte = (unsigned *)vtopte(va);
		*pte = 0;
		cpu_invlpg((void *)va);
		va += PAGE_SIZE;
	}
#ifdef SMP
	smp_invltlb();
#endif
}

static vm_page_t
pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
{
	vm_page_t m;
retry:
	m = vm_page_lookup(object, pindex);
	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
		goto retry;
	return m;
}

/*
 * Create a new thread and optionally associate it with a (new) process.
 * NOTE! the new thread's cpu may not equal the current cpu.
 */
void
pmap_init_thread(thread_t td)
{
	td->td_pcb = (struct pcb *)(td->td_kstack + UPAGES * PAGE_SIZE) - 1;
	td->td_sp = (char *)td->td_pcb - 16;
}

/*
 * Create the UPAGES for a new process.
 * This routine directly affects the fork perf for a process.
 */
void
pmap_init_proc(struct proc *p, struct thread *td)
{
	p->p_addr = (void *)td->td_kstack;
	p->p_thread = td;
	td->td_proc = p;
	td->td_switch = cpu_heavy_switch;
#ifdef SMP
	td->td_mpcount = 1;
#endif
	bzero(p->p_addr, sizeof(*p->p_addr));
}

/*
 * Dispose the UPAGES for a process that has exited.
 * This routine directly impacts the exit perf of a process.
 */
struct thread *
pmap_dispose_proc(struct proc *p)
{
	struct thread *td;

	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));

	if ((td = p->p_thread) != NULL) {
	    p->p_thread = NULL;
	    td->td_proc = NULL;
	}
	p->p_addr = NULL;
	return(td);
}

/*
 * Allow the UPAGES for a process to be prejudicially paged out.
 */
void
pmap_swapout_proc(struct proc *p)
{
#if 0
	int i;
	vm_object_t upobj;
	vm_page_t m;

	upobj = p->p_upages_obj;
	/*
	 * let the upages be paged
	 */
	for(i=0;i<UPAGES;i++) {
		if ((m = vm_page_lookup(upobj, i)) == NULL)
			panic("pmap_swapout_proc: upage already missing???");
		vm_page_dirty(m);
		vm_page_unwire(m, 0);
		pmap_kremove((vm_offset_t)p->p_addr + (PAGE_SIZE * i));
	}
#endif
}

/*
 * Bring the UPAGES for a specified process back in.
 */
void
pmap_swapin_proc(struct proc *p)
{
#if 0
	int i,rv;
	vm_object_t upobj;
	vm_page_t m;

	upobj = p->p_upages_obj;
	for(i=0;i<UPAGES;i++) {

		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);

		pmap_kenter((vm_offset_t)p->p_addr + (i * PAGE_SIZE),
			VM_PAGE_TO_PHYS(m));

		if (m->valid != VM_PAGE_BITS_ALL) {
			rv = vm_pager_get_pages(upobj, &m, 1, 0);
			if (rv != VM_PAGER_OK)
				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
			m = vm_page_lookup(upobj, i);
			m->valid = VM_PAGE_BITS_ALL;
		}

		vm_page_wire(m);
		vm_page_wakeup(m);
		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
	}
#endif
}

/***************************************************
 * Page table page management routines.....
 ***************************************************/

/*
 * This routine unholds page table pages, and if the hold count
 * drops to zero, then it decrements the wire count.
 */
static int 
_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info) 
{
	pmap_inval_flush(info);
	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
		;

	if (m->hold_count == 0) {
		vm_offset_t pteva;
		/*
		 * unmap the page table page
		 */
		pmap_inval_add(info, pmap, -1);
		pmap->pm_pdir[m->pindex] = 0;
		--pmap->pm_stats.resident_count;
		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
			(((unsigned) PTDpde) & PG_FRAME)) {
			/*
			 * Do a invltlb to make the invalidated mapping
			 * take effect immediately.
			 */
			pteva = UPT_MIN_ADDRESS + i386_ptob(m->pindex);
		}

		if (pmap->pm_ptphint == m)
			pmap->pm_ptphint = NULL;

		/*
		 * If the page is finally unwired, simply free it.
		 */
		--m->wire_count;
		if (m->wire_count == 0) {
			vm_page_flash(m);
			vm_page_busy(m);
			vm_page_free_zero(m);
			--vmstats.v_wire_count;
		}
		return 1;
	}
	return 0;
}

static PMAP_INLINE int
pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
{
	vm_page_unhold(m);
	if (m->hold_count == 0)
		return _pmap_unwire_pte_hold(pmap, m, info);
	else
		return 0;
}

/*
 * After removing a page table entry, this routine is used to
 * conditionally free the page, and manage the hold/wire counts.
 */
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
		pmap_inval_info_t info)
{
	unsigned ptepindex;
	if (va >= UPT_MIN_ADDRESS)
		return 0;

	if (mpte == NULL) {
		ptepindex = (va >> PDRSHIFT);
		if (pmap->pm_ptphint &&
			(pmap->pm_ptphint->pindex == ptepindex)) {
			mpte = pmap->pm_ptphint;
		} else {
			pmap_inval_flush(info);
			mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
			pmap->pm_ptphint = mpte;
		}
	}

	return pmap_unwire_pte_hold(pmap, mpte, info);
}

void
pmap_pinit0(struct pmap *pmap)
{
	pmap->pm_pdir =
		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t) IdlePTD);
	pmap->pm_count = 1;
	pmap->pm_active = 0;
	pmap->pm_ptphint = NULL;
	TAILQ_INIT(&pmap->pm_pvlist);
	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
}

/*
 * Initialize a preallocated and zeroed pmap structure,
 * such as one in a vmspace structure.
 */
void
pmap_pinit(struct pmap *pmap)
{
	vm_page_t ptdpg;

	/*
	 * No need to allocate page table space yet but we do need a valid
	 * page directory table.
	 */
	if (pmap->pm_pdir == NULL) {
		pmap->pm_pdir =
			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
	}

	/*
	 * allocate object for the ptes
	 */
	if (pmap->pm_pteobj == NULL)
		pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);

	/*
	 * allocate the page directory page
	 */
	ptdpg = vm_page_grab( pmap->pm_pteobj, PTDPTDI,
			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);

	ptdpg->wire_count = 1;
	++vmstats.v_wire_count;


	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
	ptdpg->valid = VM_PAGE_BITS_ALL;

	pmap_kenter((vm_offset_t)pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
	if ((ptdpg->flags & PG_ZERO) == 0)
		bzero(pmap->pm_pdir, PAGE_SIZE);

	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];

	/* install self-referential address mapping entry */
	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;

	pmap->pm_count = 1;
	pmap->pm_active = 0;
	pmap->pm_ptphint = NULL;
	TAILQ_INIT(&pmap->pm_pvlist);
	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
}

/*
 * Wire in kernel global address entries.  To avoid a race condition
 * between pmap initialization and pmap_growkernel, this procedure
 * should be called after the vmspace is attached to the process
 * but before this pmap is activated.
 */
void
pmap_pinit2(struct pmap *pmap)
{
	/* XXX copies current process, does not fill in MPPTDI */
	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
}

static int
pmap_release_free_page(struct pmap *pmap, vm_page_t p)
{
	unsigned *pde = (unsigned *) pmap->pm_pdir;
	/*
	 * This code optimizes the case of freeing non-busy
	 * page-table pages.  Those pages are zero now, and
	 * might as well be placed directly into the zero queue.
	 */
	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
		return 0;

	vm_page_busy(p);

	/*
	 * Remove the page table page from the processes address space.
	 */
	pde[p->pindex] = 0;
	pmap->pm_stats.resident_count--;

	if (p->hold_count)  {
		panic("pmap_release: freeing held page table page");
	}
	/*
	 * Page directory pages need to have the kernel
	 * stuff cleared, so they can go into the zero queue also.
	 */
	if (p->pindex == PTDPTDI) {
		bzero(pde + KPTDI, nkpt * PTESIZE);
		pde[MPPTDI] = 0;
		pde[APTDPTDI] = 0;
		pmap_kremove((vm_offset_t)pmap->pm_pdir);
	}

	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
		pmap->pm_ptphint = NULL;

	p->wire_count--;
	vmstats.v_wire_count--;
	vm_page_free_zero(p);
	return 1;
}

/*
 * this routine is called if the page table page is not
 * mapped correctly.
 */
static vm_page_t
_pmap_allocpte(pmap_t pmap, unsigned ptepindex)
{
	vm_offset_t pteva, ptepa;
	vm_page_t m;

	/*
	 * Find or fabricate a new pagetable page
	 */
	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
			VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);

	KASSERT(m->queue == PQ_NONE,
		("_pmap_allocpte: %p->queue != PQ_NONE", m));

	if (m->wire_count == 0)
		vmstats.v_wire_count++;
	m->wire_count++;

	/*
	 * Increment the hold count for the page table page
	 * (denoting a new mapping.)
	 */
	m->hold_count++;

	/*
	 * Map the pagetable page into the process address space, if
	 * it isn't already there.
	 */

	pmap->pm_stats.resident_count++;

	ptepa = VM_PAGE_TO_PHYS(m);
	pmap->pm_pdir[ptepindex] =
		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);

	/*
	 * Set the page table hint
	 */
	pmap->pm_ptphint = m;

	/*
	 * Try to use the new mapping, but if we cannot, then
	 * do it with the routine that maps the page explicitly.
	 */
	if ((m->flags & PG_ZERO) == 0) {
		if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
			(((unsigned) PTDpde) & PG_FRAME)) {
			pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
			bzero((caddr_t) pteva, PAGE_SIZE);
		} else {
			pmap_zero_page(ptepa);
		}
	}

	m->valid = VM_PAGE_BITS_ALL;
	vm_page_flag_clear(m, PG_ZERO);
	vm_page_flag_set(m, PG_MAPPED);
	vm_page_wakeup(m);

	return m;
}

static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va)
{
	unsigned ptepindex;
	vm_offset_t ptepa;
	vm_page_t m;

	/*
	 * Calculate pagetable page index
	 */
	ptepindex = va >> PDRSHIFT;

	/*
	 * Get the page directory entry
	 */
	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];

	/*
	 * This supports switching from a 4MB page to a
	 * normal 4K page.
	 */
	if (ptepa & PG_PS) {
		pmap->pm_pdir[ptepindex] = 0;
		ptepa = 0;
		cpu_invltlb();
		smp_invltlb();
	}

	/*
	 * If the page table page is mapped, we just increment the
	 * hold count, and activate it.
	 */
	if (ptepa) {
		/*
		 * In order to get the page table page, try the
		 * hint first.
		 */
		if (pmap->pm_ptphint &&
			(pmap->pm_ptphint->pindex == ptepindex)) {
			m = pmap->pm_ptphint;
		} else {
			m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
			pmap->pm_ptphint = m;
		}
		m->hold_count++;
		return m;
	}
	/*
	 * Here if the pte page isn't mapped, or if it has been deallocated.
	 */
	return _pmap_allocpte(pmap, ptepindex);
}


/***************************************************
* Pmap allocation/deallocation routines.
 ***************************************************/

/*
 * Release any resources held by the given physical map.
 * Called when a pmap initialized by pmap_pinit is being released.
 * Should only be called if the map contains no valid mappings.
 */
void
pmap_release(struct pmap *pmap)
{
	vm_page_t p,n,ptdpg;
	vm_object_t object = pmap->pm_pteobj;
	int curgeneration;

#if defined(DIAGNOSTIC)
	if (object->ref_count != 1)
		panic("pmap_release: pteobj reference count != 1");
#endif
	
	ptdpg = NULL;
retry:
	curgeneration = object->generation;
	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
		n = TAILQ_NEXT(p, listq);
		if (p->pindex == PTDPTDI) {
			ptdpg = p;
			continue;
		}
		while (1) {
			if (!pmap_release_free_page(pmap, p) &&
				(object->generation != curgeneration))
				goto retry;
		}
	}

	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
		goto retry;
}

static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;

        return sysctl_handle_long(oidp, &ksize, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
    0, 0, kvm_size, "IU", "Size of KVM");

static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;

        return sysctl_handle_long(oidp, &kfree, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
    0, 0, kvm_free, "IU", "Amount of KVM free");

/*
 * grow the number of kernel page table entries, if needed
 */
void
pmap_growkernel(vm_offset_t addr)
{
	struct proc *p;
	struct pmap *pmap;
	int s;
	vm_offset_t ptppaddr;
	vm_page_t nkpg;
	pd_entry_t newpdir;

	s = splhigh();
	if (kernel_vm_end == 0) {
		kernel_vm_end = KERNBASE;
		nkpt = 0;
		while (pdir_pde(PTD, kernel_vm_end)) {
			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
			nkpt++;
		}
	}
	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
	while (kernel_vm_end < addr) {
		if (pdir_pde(PTD, kernel_vm_end)) {
			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
			continue;
		}

		/*
		 * This index is bogus, but out of the way
		 */
		nkpg = vm_page_alloc(kptobj, nkpt, 
			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT);
		if (nkpg == NULL)
			panic("pmap_growkernel: no memory to grow kernel");

		nkpt++;

		vm_page_wire(nkpg);
		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
		pmap_zero_page(ptppaddr);
		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
		pdir_pde(PTD, kernel_vm_end) = newpdir;

		FOREACH_PROC_IN_SYSTEM(p) {
			if (p->p_vmspace) {
				pmap = vmspace_pmap(p->p_vmspace);
				*pmap_pde(pmap, kernel_vm_end) = newpdir;
			}
		}
		*pmap_pde(kernel_pmap, kernel_vm_end) = newpdir;
		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
	}
	splx(s);
}

/*
 *	Retire the given physical map from service.
 *	Should only be called if the map contains
 *	no valid mappings.
 */
void
pmap_destroy(pmap_t pmap)
{
	int count;

	if (pmap == NULL)
		return;

	count = --pmap->pm_count;
	if (count == 0) {
		pmap_release(pmap);
		panic("destroying a pmap is not yet implemented");
	}
}

/*
 *	Add a reference to the specified pmap.
 */
void
pmap_reference(pmap_t pmap)
{
	if (pmap != NULL) {
		pmap->pm_count++;
	}
}

/***************************************************
* page management routines.
 ***************************************************/

/*
 * free the pv_entry back to the free list.  This function may be
 * called from an interrupt.
 */
static PMAP_INLINE void
free_pv_entry(pv_entry_t pv)
{
	pv_entry_count--;
	zfree(pvzone, pv);
}

/*
 * get a new pv_entry, allocating a block from the system
 * when needed.  This function may be called from an interrupt.
 */
static pv_entry_t
get_pv_entry(void)
{
	pv_entry_count++;
	if (pv_entry_high_water &&
		(pv_entry_count > pv_entry_high_water) &&
		(pmap_pagedaemon_waken == 0)) {
		pmap_pagedaemon_waken = 1;
		wakeup (&vm_pages_needed);
	}
	return zalloc(pvzone);
}

/*
 * This routine is very drastic, but can save the system
 * in a pinch.
 */
void
pmap_collect(void)
{
	int i;
	vm_page_t m;
	static int warningdone=0;

	if (pmap_pagedaemon_waken == 0)
		return;

	if (warningdone < 5) {
		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
		warningdone++;
	}

	for(i = 0; i < vm_page_array_size; i++) {
		m = &vm_page_array[i];
		if (m->wire_count || m->hold_count || m->busy ||
		    (m->flags & PG_BUSY))
			continue;
		pmap_remove_all(m);
	}
	pmap_pagedaemon_waken = 0;
}
	

/*
 * If it is the first entry on the list, it is actually
 * in the header and we must copy the following entry up
 * to the header.  Otherwise we must search the list for
 * the entry.  In either case we free the now unused entry.
 */
static int
pmap_remove_entry(struct pmap *pmap, vm_page_t m, 
			vm_offset_t va, pmap_inval_info_t info)
{
	pv_entry_t pv;
	int rtval;
	int s;

	s = splvm();
	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
			if (pmap == pv->pv_pmap && va == pv->pv_va) 
				break;
		}
	} else {
		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
			if (va == pv->pv_va) 
				break;
		}
	}

	rtval = 0;
	if (pv) {
		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
		m->md.pv_list_count--;
		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
		free_pv_entry(pv);
	}
	splx(s);
	return rtval;
}

/*
 * Create a pv entry for page at pa for
 * (pmap, va).
 */
static void
pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
{
	int s;
	pv_entry_t pv;

	s = splvm();
	pv = get_pv_entry();
	pv->pv_va = va;
	pv->pv_pmap = pmap;
	pv->pv_ptem = mpte;

	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
	m->md.pv_list_count++;

	splx(s);
}

/*
 * pmap_remove_pte: do the things to unmap a page in a process
 */
static int
pmap_remove_pte(struct pmap *pmap, unsigned *ptq, vm_offset_t va,
	pmap_inval_info_t info)
{
	unsigned oldpte;
	vm_page_t m;

	pmap_inval_add(info, pmap, va);
	oldpte = loadandclear(ptq);
	if (oldpte & PG_W)
		pmap->pm_stats.wired_count -= 1;
	/*
	 * Machines that don't support invlpg, also don't support
	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
	 * the SMP case.
	 */
	if (oldpte & PG_G)
		cpu_invlpg((void *)va);
	pmap->pm_stats.resident_count -= 1;
	if (oldpte & PG_MANAGED) {
		m = PHYS_TO_VM_PAGE(oldpte);
		if (oldpte & PG_M) {
#if defined(PMAP_DIAGNOSTIC)
			if (pmap_nw_modified((pt_entry_t) oldpte)) {
				printf(
	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
				    va, oldpte);
			}
#endif
			if (pmap_track_modified(va))
				vm_page_dirty(m);
		}
		if (oldpte & PG_A)
			vm_page_flag_set(m, PG_REFERENCED);
		return pmap_remove_entry(pmap, m, va, info);
	} else {
		return pmap_unuse_pt(pmap, va, NULL, info);
	}

	return 0;
}

/*
 * pmap_remove_page:
 *
 *	Remove a single page from a process address space.
 *
 *	This function may not be called from an interrupt if the pmap is
 *	not kernel_pmap.
 */
static void
pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
{
	unsigned *ptq;

	/*
	 * if there is no pte for this address, just skip it!!!  Otherwise
	 * get a local va for mappings for this pmap and remove the entry.
	 */
	if (*pmap_pde(pmap, va) != 0) {
		ptq = get_ptbase(pmap) + i386_btop(va);
		if (*ptq) {
			pmap_remove_pte(pmap, ptq, va, info);
		}
	}
}

/*
 * pmap_remove:
 *
 *	Remove the given range of addresses from the specified map.
 *
 *	It is assumed that the start and end are properly
 *	rounded to the page size.
 *
 *	This function may not be called from an interrupt if the pmap is
 *	not kernel_pmap.
 */
void
pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
{
	unsigned *ptbase;
	vm_offset_t pdnxt;
	vm_offset_t ptpaddr;
	vm_offset_t sindex, eindex;
	struct pmap_inval_info info;

	if (pmap == NULL)
		return;

	if (pmap->pm_stats.resident_count == 0)
		return;

	pmap_inval_init(&info);

	/*
	 * special handling of removing one page.  a very
	 * common operation and easy to short circuit some
	 * code.
	 */
	if (((sva + PAGE_SIZE) == eva) && 
		(((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
		pmap_remove_page(pmap, sva, &info);
		pmap_inval_flush(&info);
		return;
	}

	/*
	 * Get a local virtual address for the mappings that are being
	 * worked with.
	 */
	ptbase = get_ptbase(pmap);

	sindex = i386_btop(sva);
	eindex = i386_btop(eva);

	for (; sindex < eindex; sindex = pdnxt) {
		unsigned pdirindex;

		/*
		 * Calculate index for next page table.
		 */
		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
		if (pmap->pm_stats.resident_count == 0)
			break;

		pdirindex = sindex / NPDEPG;
		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
			pmap_inval_add(&info, pmap, -1);
			pmap->pm_pdir[pdirindex] = 0;
			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
			continue;
		}

		/*
		 * Weed out invalid mappings. Note: we assume that the page
		 * directory table is always allocated, and in kernel virtual.
		 */
		if (ptpaddr == 0)
			continue;

		/*
		 * Limit our scan to either the end of the va represented
		 * by the current page table page, or to the end of the
		 * range being removed.
		 */
		if (pdnxt > eindex) {
			pdnxt = eindex;
		}

		for (; sindex != pdnxt; sindex++) {
			vm_offset_t va;
			if (ptbase[sindex] == 0)
				continue;
			va = i386_ptob(sindex);
			if (pmap_remove_pte(pmap, ptbase + sindex, va, &info))
				break;
		}
	}
	pmap_inval_flush(&info);
}

/*
 * pmap_remove_all:
 *
 *	Removes this physical page from all physical maps in which it resides.
 *	Reflects back modify bits to the pager.
 *
 *	This routine may not be called from an interrupt.
 */

static void
pmap_remove_all(vm_page_t m)
{
	struct pmap_inval_info info;
	unsigned *pte, tpte;
	pv_entry_t pv;
	int s;

#if defined(PMAP_DIAGNOSTIC)
	/*
	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
	 * pages!
	 */
	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
	}
#endif

	pmap_inval_init(&info);
	s = splvm();
	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
		pv->pv_pmap->pm_stats.resident_count--;

		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
		pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);

		tpte = loadandclear(pte);
		if (tpte & PG_W)
			pv->pv_pmap->pm_stats.wired_count--;

		if (tpte & PG_A)
			vm_page_flag_set(m, PG_REFERENCED);

		/*
		 * Update the vm_page_t clean and reference bits.
		 */
		if (tpte & PG_M) {
#if defined(PMAP_DIAGNOSTIC)
			if (pmap_nw_modified((pt_entry_t) tpte)) {
				printf(
	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
				    pv->pv_va, tpte);
			}
#endif
			if (pmap_track_modified(pv->pv_va))
				vm_page_dirty(m);
		}
		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
		m->md.pv_list_count--;
		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
		free_pv_entry(pv);
	}

	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
	splx(s);
	pmap_inval_flush(&info);
}

/*
 * pmap_protect:
 *
 *	Set the physical protection on the specified range of this map
 *	as requested.
 *
 *	This function may not be called from an interrupt if the map is
 *	not the kernel_pmap.
 */
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
	unsigned *ptbase;
	vm_offset_t pdnxt, ptpaddr;
	vm_pindex_t sindex, eindex;
	pmap_inval_info info;

	if (pmap == NULL)
		return;

	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
		pmap_remove(pmap, sva, eva);
		return;
	}

	if (prot & VM_PROT_WRITE)
		return;

	pmap_inval_init(&info);

	ptbase = get_ptbase(pmap);

	sindex = i386_btop(sva);
	eindex = i386_btop(eva);

	for (; sindex < eindex; sindex = pdnxt) {

		unsigned pdirindex;

		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));

		pdirindex = sindex / NPDEPG;
		if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
			pmap_inval_add(&info, pmap, -1);
			(unsigned) pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
			continue;
		}

		/*
		 * Weed out invalid mappings. Note: we assume that the page
		 * directory table is always allocated, and in kernel virtual.
		 */
		if (ptpaddr == 0)
			continue;

		if (pdnxt > eindex) {
			pdnxt = eindex;
		}

		for (; sindex != pdnxt; sindex++) {

			unsigned pbits;
			vm_page_t m;

			/* XXX this isn't optimal */
			pmap_inval_add(&info, pmap, i386_ptob(sindex));
			pbits = ptbase[sindex];

			if (pbits & PG_MANAGED) {
				m = NULL;
				if (pbits & PG_A) {
					m = PHYS_TO_VM_PAGE(pbits);
					vm_page_flag_set(m, PG_REFERENCED);
					pbits &= ~PG_A;
				}
				if (pbits & PG_M) {
					if (pmap_track_modified(i386_ptob(sindex))) {
						if (m == NULL)
							m = PHYS_TO_VM_PAGE(pbits);
						vm_page_dirty(m);
						pbits &= ~PG_M;
					}
				}
			}

			pbits &= ~PG_RW;

			if (pbits != ptbase[sindex]) {
				ptbase[sindex] = pbits;
			}
		}
	}
	pmap_inval_flush(&info);
}

/*
 *	Insert the given physical page (p) at
 *	the specified virtual address (v) in the
 *	target physical map with the protection requested.
 *
 *	If specified, the page will be wired down, meaning
 *	that the related pte can not be reclaimed.
 *
 *	NB:  This is the only routine which MAY NOT lazy-evaluate
 *	or lose information.  That is, this routine must actually
 *	insert this page into the given map NOW.
 */
void
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
	   boolean_t wired)
{
	vm_paddr_t pa;
	unsigned *pte;
	vm_paddr_t opa;
	vm_offset_t origpte, newpte;
	vm_page_t mpte;
	pmap_inval_info info;

	if (pmap == NULL)
		return;

	va &= PG_FRAME;
#ifdef PMAP_DIAGNOSTIC
	if (va > VM_MAX_KERNEL_ADDRESS)
		panic("pmap_enter: toobig");
	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
#endif

	mpte = NULL;
	/*
	 * In the case that a page table page is not
	 * resident, we are creating it here.
	 */
	if (va < UPT_MIN_ADDRESS) {
		mpte = pmap_allocpte(pmap, va);
	}

	pmap_inval_init(&info);
	pte = pmap_pte(pmap, va);

	/*
	 * Page Directory table entry not valid, we need a new PT page
	 */
	if (pte == NULL) {
		panic("pmap_enter: invalid page directory pdir=%x, va=0x%x\n",
		     (unsigned) pmap->pm_pdir[PTDPTDI], va);
	}

	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
	pmap_inval_add(&info, pmap, va); /* XXX non-optimal */
	origpte = *(vm_offset_t *)pte;
	opa = origpte & PG_FRAME;

	if (origpte & PG_PS)
		panic("pmap_enter: attempted pmap_enter on 4MB page");

	/*
	 * Mapping has not changed, must be protection or wiring change.
	 */
	if (origpte && (opa == pa)) {
		/*
		 * Wiring change, just update stats. We don't worry about
		 * wiring PT pages as they remain resident as long as there
		 * are valid mappings in them. Hence, if a user page is wired,
		 * the PT page will be also.
		 */
		if (wired && ((origpte & PG_W) == 0))
			pmap->pm_stats.wired_count++;
		else if (!wired && (origpte & PG_W))
			pmap->pm_stats.wired_count--;

#if defined(PMAP_DIAGNOSTIC)
		if (pmap_nw_modified((pt_entry_t) origpte)) {
			printf(
	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
			    va, origpte);
		}
#endif

		/*
		 * Remove extra pte reference
		 */
		if (mpte)
			mpte->hold_count--;

		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
			if ((origpte & PG_RW) == 0)
				*pte |= PG_RW;
			pmap_inval_flush(&info);
			return;
		}

		/*
		 * We might be turning off write access to the page,
		 * so we go ahead and sense modify status.
		 */
		if (origpte & PG_MANAGED) {
			if ((origpte & PG_M) && pmap_track_modified(va)) {
				vm_page_t om;
				om = PHYS_TO_VM_PAGE(opa);
				vm_page_dirty(om);
			}
			pa |= PG_MANAGED;
		}
		goto validate;
	} 
	/*
	 * Mapping has changed, invalidate old range and fall through to
	 * handle validating new mapping.
	 */
	if (opa) {
		int err;
		err = pmap_remove_pte(pmap, pte, va, &info);
		if (err)
			panic("pmap_enter: pte vanished, va: 0x%x", va);
	}

	/*
	 * Enter on the PV list if part of our managed memory. Note that we
	 * raise IPL while manipulating pv_table since pmap_enter can be
	 * called at interrupt time.
	 */
	if (pmap_initialized && 
	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
		pmap_insert_entry(pmap, va, mpte, m);
		pa |= PG_MANAGED;
	}

	/*
	 * Increment counters
	 */
	pmap->pm_stats.resident_count++;
	if (wired)
		pmap->pm_stats.wired_count++;

validate:
	/*
	 * Now validate mapping with desired protection/wiring.
	 */
	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);

	if (wired)
		newpte |= PG_W;
	if (va < UPT_MIN_ADDRESS)
		newpte |= PG_U;
	if (pmap == kernel_pmap)
		newpte |= pgeflag;

	/*
	 * if the mapping or permission bits are different, we need
	 * to update the pte.
	 */
	if ((origpte & ~(PG_M|PG_A)) != newpte) {
		*pte = newpte | PG_A;
	}
	pmap_inval_flush(&info);
}

/*
 * this code makes some *MAJOR* assumptions:
 * 1. Current pmap & pmap exists.
 * 2. Not wired.
 * 3. Read access.
 * 4. No page table pages.
 * 5. Tlbflush is deferred to calling procedure.
 * 6. Page IS managed.
 * but is *MUCH* faster than pmap_enter...
 */

static vm_page_t
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
{
	unsigned *pte;
	vm_paddr_t pa;
	pmap_inval_info info;

	pmap_inval_init(&info);

	/*
	 * In the case that a page table page is not
	 * resident, we are creating it here.
	 */
	if (va < UPT_MIN_ADDRESS) {
		unsigned ptepindex;
		vm_offset_t ptepa;

		/*
		 * Calculate pagetable page index
		 */
		ptepindex = va >> PDRSHIFT;
		if (mpte && (mpte->pindex == ptepindex)) {
			mpte->hold_count++;
		} else {
retry:
			/*
			 * Get the page directory entry
			 */
			ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];

			/*
			 * If the page table page is mapped, we just increment
			 * the hold count, and activate it.
			 */
			if (ptepa) {
				if (ptepa & PG_PS)
					panic("pmap_enter_quick: unexpected mapping into 4MB page");
				if (pmap->pm_ptphint &&
					(pmap->pm_ptphint->pindex == ptepindex)) {
					mpte = pmap->pm_ptphint;
				} else {
					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
					pmap->pm_ptphint = mpte;
				}
				if (mpte == NULL)
					goto retry;
				mpte->hold_count++;
			} else {
				mpte = _pmap_allocpte(pmap, ptepindex);
			}
		}
	} else {
		mpte = NULL;
	}

	/*
	 * This call to vtopte makes the assumption that we are
	 * entering the page into the current pmap.  In order to support
	 * quick entry into any pmap, one would likely use pmap_pte_quick.
	 * But that isn't as quick as vtopte.
	 */
	pte = (unsigned *)vtopte(va);
	if (*pte) {
		if (mpte)
			pmap_unwire_pte_hold(pmap, mpte, &info);
		return 0;
	}

	/*
	 * Enter on the PV list if part of our managed memory. Note that we
	 * raise IPL while manipulating pv_table since pmap_enter can be
	 * called at interrupt time.
	 */
	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
		pmap_insert_entry(pmap, va, mpte, m);

	/*
	 * Increment counters
	 */
	pmap->pm_stats.resident_count++;

	pa = VM_PAGE_TO_PHYS(m);

	/*
	 * Now validate mapping with RO protection
	 */
	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
		*pte = pa | PG_V | PG_U;
	else
		*pte = pa | PG_V | PG_U | PG_MANAGED;

	return mpte;
}

/*
 * Make a temporary mapping for a physical address.  This is only intended
 * to be used for panic dumps.
 */
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
	pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
	return ((void *)crashdumpmap);
}

#define MAX_INIT_PT (96)
/*
 * pmap_object_init_pt preloads the ptes for a given object
 * into the specified pmap.  This eliminates the blast of soft
 * faults on process startup and immediately after an mmap.
 */
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
		    vm_pindex_t pindex, vm_size_t size, int limit)
{
	vm_offset_t tmpidx;
	int psize;
	vm_page_t p, mpte;
	int objpgs;

	if (pmap == NULL || object == NULL)
		return;

	/*
	 * This code maps large physical mmap regions into the
	 * processor address space.  Note that some shortcuts
	 * are taken, but the code works.
	 */
	if (pseflag &&
		(object->type == OBJT_DEVICE) &&
		((addr & (NBPDR - 1)) == 0) &&
		((size & (NBPDR - 1)) == 0) ) {
		int i;
		vm_page_t m[1];
		unsigned int ptepindex;
		int npdes;
		vm_offset_t ptepa;

		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
			return;

retry:
		p = vm_page_lookup(object, pindex);
		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
			goto retry;

		if (p == NULL) {
			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
			if (p == NULL)
				return;
			m[0] = p;

			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
				vm_page_free(p);
				return;
			}

			p = vm_page_lookup(object, pindex);
			vm_page_wakeup(p);
		}

		ptepa = (vm_offset_t) VM_PAGE_TO_PHYS(p);
		if (ptepa & (NBPDR - 1)) {
			return;
		}

		p->valid = VM_PAGE_BITS_ALL;

		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
		npdes = size >> PDRSHIFT;
		for(i=0;i<npdes;i++) {
			pmap->pm_pdir[ptepindex] =
				(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_PS);
			ptepa += NBPDR;
			ptepindex += 1;
		}
		vm_page_flag_set(p, PG_MAPPED);
		cpu_invltlb();
		smp_invltlb();
		return;
	}

	psize = i386_btop(size);

	if ((object->type != OBJT_VNODE) ||
		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
			(object->resident_page_count > MAX_INIT_PT))) {
		return;
	}

	if (psize + pindex > object->size) {
		if (object->size < pindex)
			return;		  
		psize = object->size - pindex;
	}

	mpte = NULL;
	/*
	 * if we are processing a major portion of the object, then scan the
	 * entire thing.
	 */
	if (psize > (object->resident_page_count >> 2)) {
		objpgs = psize;

		for (p = TAILQ_FIRST(&object->memq);
		    ((objpgs > 0) && (p != NULL));
		    p = TAILQ_NEXT(p, listq)) {

			tmpidx = p->pindex;
			if (tmpidx < pindex) {
				continue;
			}
			tmpidx -= pindex;
			if (tmpidx >= psize) {
				continue;
			}
			/*
			 * don't allow an madvise to blow away our really
			 * free pages allocating pv entries.
			 */
			if ((limit & MAP_PREFAULT_MADVISE) &&
			    vmstats.v_free_count < vmstats.v_free_reserved) {
				break;
			}
			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
				(p->busy == 0) &&
			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
				if ((p->queue - p->pc) == PQ_CACHE)
					vm_page_deactivate(p);
				vm_page_busy(p);
				mpte = pmap_enter_quick(pmap, 
					addr + i386_ptob(tmpidx), p, mpte);
				vm_page_flag_set(p, PG_MAPPED);
				vm_page_wakeup(p);
			}
			objpgs -= 1;
		}
	} else {
		/*
		 * else lookup the pages one-by-one.
		 */
		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
			/*
			 * don't allow an madvise to blow away our really
			 * free pages allocating pv entries.
			 */
			if ((limit & MAP_PREFAULT_MADVISE) &&
			    vmstats.v_free_count < vmstats.v_free_reserved) {
				break;
			}
			p = vm_page_lookup(object, tmpidx + pindex);
			if (p &&
			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
				(p->busy == 0) &&
			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
				if ((p->queue - p->pc) == PQ_CACHE)
					vm_page_deactivate(p);
				vm_page_busy(p);
				mpte = pmap_enter_quick(pmap, 
					addr + i386_ptob(tmpidx), p, mpte);
				vm_page_flag_set(p, PG_MAPPED);
				vm_page_wakeup(p);
			}
		}
	}
}

/*
 * pmap_prefault provides a quick way of clustering
 * pagefaults into a processes address space.  It is a "cousin"
 * of pmap_object_init_pt, except it runs at page fault time instead
 * of mmap time.
 */
#define PFBAK 4
#define PFFOR 4
#define PAGEORDER_SIZE (PFBAK+PFFOR)

static int pmap_prefault_pageorder[] = {
	-PAGE_SIZE, PAGE_SIZE,
	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
	-3 * PAGE_SIZE, 3 * PAGE_SIZE
	-4 * PAGE_SIZE, 4 * PAGE_SIZE
};

void
pmap_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
{
	int i;
	vm_offset_t starta;
	vm_offset_t addr;
	vm_pindex_t pindex;
	vm_page_t m, mpte;
	vm_object_t object;

	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace)))
		return;

	object = entry->object.vm_object;

	starta = addra - PFBAK * PAGE_SIZE;
	if (starta < entry->start) {
		starta = entry->start;
	} else if (starta > addra) {
		starta = 0;
	}

	mpte = NULL;
	for (i = 0; i < PAGEORDER_SIZE; i++) {
		vm_object_t lobject;
		unsigned *pte;

		addr = addra + pmap_prefault_pageorder[i];
		if (addr > addra + (PFFOR * PAGE_SIZE))
			addr = 0;

		if (addr < starta || addr >= entry->end)
			continue;

		if ((*pmap_pde(pmap, addr)) == NULL) 
			continue;

		pte = (unsigned *) vtopte(addr);
		if (*pte)
			continue;

		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
		lobject = object;
		for (m = vm_page_lookup(lobject, pindex);
		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
		    lobject = lobject->backing_object) {
			if (lobject->backing_object_offset & PAGE_MASK)
				break;
			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
			m = vm_page_lookup(lobject->backing_object, pindex);
		}

		/*
		 * give-up when a page is not in memory
		 */
		if (m == NULL)
			break;

		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
			(m->busy == 0) &&
		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {

			if ((m->queue - m->pc) == PQ_CACHE) {
				vm_page_deactivate(m);
			}
			vm_page_busy(m);
			mpte = pmap_enter_quick(pmap, addr, m, mpte);
			vm_page_flag_set(m, PG_MAPPED);
			vm_page_wakeup(m);
		}
	}
}

/*
 *	Routine:	pmap_change_wiring
 *	Function:	Change the wiring attribute for a map/virtual-address
 *			pair.
 *	In/out conditions:
 *			The mapping must already exist in the pmap.
 */
void
pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
{
	unsigned *pte;

	if (pmap == NULL)
		return;

	pte = pmap_pte(pmap, va);

	if (wired && !pmap_pte_w(pte))
		pmap->pm_stats.wired_count++;
	else if (!wired && pmap_pte_w(pte))
		pmap->pm_stats.wired_count--;

	/*
	 * Wiring is not a hardware characteristic so there is no need to
	 * invalidate TLB.  However, in an SMP environment we must use
	 * a locked bus cycle to update the pte (if we are not using 
	 * the pmap_inval_*() API that is)... it's ok to do this for simple
	 * wiring changes.
	 */
#ifdef SMP
	if (wired)
		atomic_set_int(pte, PG_W);
	else
		atomic_clear_int(pte, PG_W);
#else
	if (wired)
		atomic_set_int_nonlocked(pte, PG_W);
	else
		atomic_clear_int_nonlocked(pte, PG_W);
#endif
}



/*
 *	Copy the range specified by src_addr/len
 *	from the source map to the range dst_addr/len
 *	in the destination map.
 *
 *	This routine is only advisory and need not do anything.
 */
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, 
	vm_size_t len, vm_offset_t src_addr)
{
	pmap_inval_info info;
	vm_offset_t addr;
	vm_offset_t end_addr = src_addr + len;
	vm_offset_t pdnxt;
	unsigned src_frame, dst_frame;
	vm_page_t m;

	if (dst_addr != src_addr)
		return;

	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
	if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
		return;
	}

	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
		/* The page directory is not shared between CPUs */
		cpu_invltlb();
	}
	pmap_inval_init(&info);
	pmap_inval_add(&info, dst_pmap, -1);
	pmap_inval_add(&info, src_pmap, -1);

	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
		unsigned *src_pte, *dst_pte;
		vm_page_t dstmpte, srcmpte;
		vm_offset_t srcptepaddr;
		unsigned ptepindex;

		if (addr >= UPT_MIN_ADDRESS)
			panic("pmap_copy: invalid to pmap_copy page tables\n");

		/*
		 * Don't let optional prefaulting of pages make us go
		 * way below the low water mark of free pages or way
		 * above high water mark of used pv entries.
		 */
		if (vmstats.v_free_count < vmstats.v_free_reserved ||
		    pv_entry_count > pv_entry_high_water)
			break;
		
		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
		ptepindex = addr >> PDRSHIFT;

		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
		if (srcptepaddr == 0)
			continue;
			
		if (srcptepaddr & PG_PS) {
			if (dst_pmap->pm_pdir[ptepindex] == 0) {
				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
			}
			continue;
		}

		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
		if ((srcmpte == NULL) ||
			(srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
			continue;

		if (pdnxt > end_addr)
			pdnxt = end_addr;

		src_pte = (unsigned *) vtopte(addr);
		dst_pte = (unsigned *) avtopte(addr);
		while (addr < pdnxt) {
			unsigned ptetemp;
			ptetemp = *src_pte;
			/*
			 * we only virtual copy managed pages
			 */
			if ((ptetemp & PG_MANAGED) != 0) {
				/*
				 * We have to check after allocpte for the
				 * pte still being around...  allocpte can
				 * block.
				 */
				dstmpte = pmap_allocpte(dst_pmap, addr);
				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
					/*
					 * Clear the modified and
					 * accessed (referenced) bits
					 * during the copy.
					 */
					m = PHYS_TO_VM_PAGE(ptetemp);
					*dst_pte = ptetemp & ~(PG_M | PG_A);
					dst_pmap->pm_stats.resident_count++;
					pmap_insert_entry(dst_pmap, addr,
						dstmpte, m);
	 			} else {
					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
				}
				if (dstmpte->hold_count >= srcmpte->hold_count)
					break;
			}
			addr += PAGE_SIZE;
			src_pte++;
			dst_pte++;
		}
	}
	pmap_inval_flush(&info);
}	

/*
 *	Routine:	pmap_kernel
 *	Function:
 *		Returns the physical map handle for the kernel.
 */
pmap_t
pmap_kernel(void)
{
	return (kernel_pmap);
}

/*
 * pmap_zero_page:
 *
 *	Zero the specified PA by mapping the page into KVM and clearing its
 *	contents.
 *
 *	This function may be called from an interrupt and no locking is
 *	required.
 */
void
pmap_zero_page(vm_paddr_t phys)
{
	struct mdglobaldata *gd = mdcpu;

	crit_enter();
	if (*(int *)gd->gd_CMAP3)
		panic("pmap_zero_page: CMAP3 busy");
	*(int *)gd->gd_CMAP3 =
		    PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
	cpu_invlpg(gd->gd_CADDR3);

#if defined(I686_CPU)
	if (cpu_class == CPUCLASS_686)
		i686_pagezero(gd->gd_CADDR3);
	else
#endif
		bzero(gd->gd_CADDR3, PAGE_SIZE);
	*(int *) gd->gd_CMAP3 = 0;
	crit_exit();
}

/*
 * pmap_zero_page:
 *
 *	Zero part of a physical page by mapping it into memory and clearing
 *	its contents with bzero.
 *
 *	off and size may not cover an area beyond a single hardware page.
 */
void
pmap_zero_page_area(vm_paddr_t phys, int off, int size)
{
	struct mdglobaldata *gd = mdcpu;

	crit_enter();
	if (*(int *) gd->gd_CMAP3)
		panic("pmap_zero_page: CMAP3 busy");
	*(int *) gd->gd_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
	cpu_invlpg(gd->gd_CADDR3);

#if defined(I686_CPU)
	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
		i686_pagezero(gd->gd_CADDR3);
	else
#endif
		bzero((char *)gd->gd_CADDR3 + off, size);
	*(int *) gd->gd_CMAP3 = 0;
	crit_exit();
}

/*
 * pmap_copy_page:
 *
 *	Copy the physical page from the source PA to the target PA.
 *	This function may be called from an interrupt.  No locking
 *	is required.
 */
void
pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
{
	struct mdglobaldata *gd = mdcpu;

	crit_enter();
	if (*(int *) gd->gd_CMAP1)
		panic("pmap_copy_page: CMAP1 busy");
	if (*(int *) gd->gd_CMAP2)
		panic("pmap_copy_page: CMAP2 busy");

	*(int *) gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
	*(int *) gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;

	cpu_invlpg(gd->gd_CADDR1);
	cpu_invlpg(gd->gd_CADDR2);

	bcopy(gd->gd_CADDR1, gd->gd_CADDR2, PAGE_SIZE);

	*(int *) gd->gd_CMAP1 = 0;
	*(int *) gd->gd_CMAP2 = 0;
	crit_exit();
}

/*
 * pmap_copy_page_frag:
 *
 *	Copy the physical page from the source PA to the target PA.
 *	This function may be called from an interrupt.  No locking
 *	is required.
 */
void
pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
{
	struct mdglobaldata *gd = mdcpu;

	crit_enter();
	if (*(int *) gd->gd_CMAP1)
		panic("pmap_copy_page: CMAP1 busy");
	if (*(int *) gd->gd_CMAP2)
		panic("pmap_copy_page: CMAP2 busy");

	*(int *) gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
	*(int *) gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;

	cpu_invlpg(gd->gd_CADDR1);
	cpu_invlpg(gd->gd_CADDR2);

	bcopy((char *)gd->gd_CADDR1 + (src & PAGE_MASK),
	      (char *)gd->gd_CADDR2 + (dst & PAGE_MASK),
	      bytes);

	*(int *) gd->gd_CMAP1 = 0;
	*(int *) gd->gd_CMAP2 = 0;
	crit_exit();
}


/*
 *	Routine:	pmap_pageable
 *	Function:
 *		Make the specified pages (by pmap, offset)
 *		pageable (or not) as requested.
 *
 *		A page which is not pageable may not take
 *		a fault; therefore, its page table entry
 *		must remain valid for the duration.
 *
 *		This routine is merely advisory; pmap_enter
 *		will specify that these pages are to be wired
 *		down (or not) as appropriate.
 */
void
pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, boolean_t pageable)
{
}

/*
 * Returns true if the pmap's pv is one of the first
 * 16 pvs linked to from this page.  This count may
 * be changed upwards or downwards in the future; it
 * is only necessary that true be returned for a small
 * subset of pmaps for proper page aging.
 */
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
	pv_entry_t pv;
	int loops = 0;
	int s;

	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
		return FALSE;

	s = splvm();

	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
		if (pv->pv_pmap == pmap) {
			splx(s);
			return TRUE;
		}
		loops++;
		if (loops >= 16)
			break;
	}
	splx(s);
	return (FALSE);
}

#define PMAP_REMOVE_PAGES_CURPROC_ONLY
/*
 * Remove all pages from specified address space
 * this aids process exit speeds.  Also, this code
 * is special cased for current process only, but
 * can have the more generic (and slightly slower)
 * mode enabled.  This is much faster than pmap_remove
 * in the case of running down an entire address space.
 */
void
pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
	unsigned *pte, tpte;
	pv_entry_t pv, npv;
	int s;
	vm_page_t m;
	pmap_inval_info info;

#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace))) {
		printf("warning: pmap_remove_pages called with non-current pmap\n");
		return;
	}
#endif

	pmap_inval_init(&info);
	s = splvm();
	for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
		pv;
		pv = npv) {

		if (pv->pv_va >= eva || pv->pv_va < sva) {
			npv = TAILQ_NEXT(pv, pv_plist);
			continue;
		}

#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
		pte = (unsigned *)vtopte(pv->pv_va);
#else
		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
#endif
		pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
		tpte = *pte;

/*
 * We cannot remove wired pages from a process' mapping at this time
 */
		if (tpte & PG_W) {
			npv = TAILQ_NEXT(pv, pv_plist);
			continue;
		}
		*pte = 0;

		m = PHYS_TO_VM_PAGE(tpte);

		KASSERT(m < &vm_page_array[vm_page_array_size],
			("pmap_remove_pages: bad tpte %x", tpte));

		pv->pv_pmap->pm_stats.resident_count--;

		/*
		 * Update the vm_page_t clean and reference bits.
		 */
		if (tpte & PG_M) {
			vm_page_dirty(m);
		}


		npv = TAILQ_NEXT(pv, pv_plist);
		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);

		m->md.pv_list_count--;
		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
		}

		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
		free_pv_entry(pv);
	}
	pmap_inval_flush(&info);
	splx(s);
}

/*
 * pmap_testbit tests bits in pte's
 * note that the testbit/changebit routines are inline,
 * and a lot of things compile-time evaluate.
 */
static boolean_t
pmap_testbit(vm_page_t m, int bit)
{
	pv_entry_t pv;
	unsigned *pte;
	int s;

	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
		return FALSE;

	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
		return FALSE;

	s = splvm();

	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
		/*
		 * if the bit being tested is the modified bit, then
		 * mark clean_map and ptes as never
		 * modified.
		 */
		if (bit & (PG_A|PG_M)) {
			if (!pmap_track_modified(pv->pv_va))
				continue;
		}

#if defined(PMAP_DIAGNOSTIC)
		if (!pv->pv_pmap) {
			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
			continue;
		}
#endif
		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
		if (*pte & bit) {
			splx(s);
			return TRUE;
		}
	}
	splx(s);
	return (FALSE);
}

/*
 * this routine is used to modify bits in ptes
 */
static __inline void
pmap_changebit(vm_page_t m, int bit, boolean_t setem)
{
	struct pmap_inval_info info;
	pv_entry_t pv;
	unsigned *pte;
	int s;

	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
		return;

	pmap_inval_init(&info);
	s = splvm();

	/*
	 * Loop over all current mappings setting/clearing as appropos If
	 * setting RO do we need to clear the VAC?
	 */
	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
		/*
		 * don't write protect pager mappings
		 */
		if (!setem && (bit == PG_RW)) {
			if (!pmap_track_modified(pv->pv_va))
				continue;
		}

#if defined(PMAP_DIAGNOSTIC)
		if (!pv->pv_pmap) {
			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
			continue;
		}
#endif

		/*
		 * Careful here.  We can use a locked bus instruction to
		 * clear PG_A or PG_M safely but we need to synchronize
		 * with the target cpus when we mess with PG_RW.
		 */
		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
		if (bit == PG_RW)
			pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);

		if (setem) {
#ifdef SMP
			atomic_set_int(pte, bit);
#else
			atomic_set_int_nonlocked(pte, bit);
#endif
		} else {
			vm_offset_t pbits = *(vm_offset_t *)pte;
			if (pbits & bit) {
				if (bit == PG_RW) {
					if (pbits & PG_M) {
						vm_page_dirty(m);
					}
#ifdef SMP
					atomic_clear_int(pte, PG_M|PG_RW);
#else
					atomic_clear_int_nonlocked(pte, PG_M|PG_RW);
#endif
				} else {
#ifdef SMP
					atomic_clear_int(pte, bit);
#else
					atomic_clear_int_nonlocked(pte, bit);
#endif
				}
			}
		}
	}
	pmap_inval_flush(&info);
	splx(s);
}

/*
 *      pmap_page_protect:
 *
 *      Lower the permission for all mappings to a given page.
 */
void
pmap_page_protect(vm_page_t m, vm_prot_t prot)
{
	if ((prot & VM_PROT_WRITE) == 0) {
		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
			pmap_changebit(m, PG_RW, FALSE);
		} else {
			pmap_remove_all(m);
		}
	}
}

vm_paddr_t
pmap_phys_address(int ppn)
{
	return (i386_ptob(ppn));
}

/*
 *	pmap_ts_referenced:
 *
 *	Return a count of reference bits for a page, clearing those bits.
 *	It is not necessary for every reference bit to be cleared, but it
 *	is necessary that 0 only be returned when there are truly no
 *	reference bits set.
 *
 *	XXX: The exact number of bits to check and clear is a matter that
 *	should be tested and standardized at some point in the future for
 *	optimal aging of shared pages.
 */
int
pmap_ts_referenced(vm_page_t m)
{
	pv_entry_t pv, pvf, pvn;
	unsigned *pte;
	int s;
	int rtval = 0;

	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
		return (rtval);

	s = splvm();

	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {

		pvf = pv;

		do {
			pvn = TAILQ_NEXT(pv, pv_list);

			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);

			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);

			if (!pmap_track_modified(pv->pv_va))
				continue;

			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);

			if (pte && (*pte & PG_A)) {
#ifdef SMP
				atomic_clear_int(pte, PG_A);
#else
				atomic_clear_int_nonlocked(pte, PG_A);
#endif
				rtval++;
				if (rtval > 4) {
					break;
				}
			}
		} while ((pv = pvn) != NULL && pv != pvf);
	}
	splx(s);

	return (rtval);
}

/*
 *	pmap_is_modified:
 *
 *	Return whether or not the specified physical page was modified
 *	in any physical maps.
 */
boolean_t
pmap_is_modified(vm_page_t m)
{
	return pmap_testbit(m, PG_M);
}

/*
 *	Clear the modify bits on the specified physical page.
 */
void
pmap_clear_modify(vm_page_t m)
{
	pmap_changebit(m, PG_M, FALSE);
}

/*
 *	pmap_clear_reference:
 *
 *	Clear the reference bit on the specified physical page.
 */
void
pmap_clear_reference(vm_page_t m)
{
	pmap_changebit(m, PG_A, FALSE);
}

/*
 * Miscellaneous support routines follow
 */

static void
i386_protection_init(void)
{
	int *kp, prot;

	kp = protection_codes;
	for (prot = 0; prot < 8; prot++) {
		switch (prot) {
		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
			/*
			 * Read access is also 0. There isn't any execute bit,
			 * so just make it readable.
			 */
		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
			*kp++ = 0;
			break;
		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
			*kp++ = PG_RW;
			break;
		}
	}
}

/*
 * Map a set of physical memory pages into the kernel virtual
 * address space. Return a pointer to where it is mapped. This
 * routine is intended to be used for mapping device memory,
 * NOT real memory.
 *
 * NOTE: we can't use pgeflag unless we invalidate the pages one at
 * a time.
 */
void *
pmap_mapdev(vm_paddr_t pa, vm_size_t size)
{
	vm_offset_t va, tmpva, offset;
	unsigned *pte;

	offset = pa & PAGE_MASK;
	size = roundup(offset + size, PAGE_SIZE);

	va = kmem_alloc_pageable(kernel_map, size);
	if (!va)
		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");

	pa = pa & PG_FRAME;
	for (tmpva = va; size > 0;) {
		pte = (unsigned *)vtopte(tmpva);
		*pte = pa | PG_RW | PG_V; /* | pgeflag; */
		size -= PAGE_SIZE;
		tmpva += PAGE_SIZE;
		pa += PAGE_SIZE;
	}
	cpu_invltlb();
	smp_invltlb();

	return ((void *)(va + offset));
}

void
pmap_unmapdev(vm_offset_t va, vm_size_t size)
{
	vm_offset_t base, offset;

	base = va & PG_FRAME;
	offset = va & PAGE_MASK;
	size = roundup(offset + size, PAGE_SIZE);
	kmem_free(kernel_map, base, size);
}

/*
 * perform the pmap work for mincore
 */
int
pmap_mincore(pmap_t pmap, vm_offset_t addr)
{
	unsigned *ptep, pte;
	vm_page_t m;
	int val = 0;
	
	ptep = pmap_pte(pmap, addr);
	if (ptep == 0) {
		return 0;
	}

	if ((pte = *ptep) != 0) {
		vm_offset_t pa;

		val = MINCORE_INCORE;
		if ((pte & PG_MANAGED) == 0)
			return val;

		pa = pte & PG_FRAME;

		m = PHYS_TO_VM_PAGE(pa);

		/*
		 * Modified by us
		 */
		if (pte & PG_M)
			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
		/*
		 * Modified by someone
		 */
		else if (m->dirty || pmap_is_modified(m))
			val |= MINCORE_MODIFIED_OTHER;
		/*
		 * Referenced by us
		 */
		if (pte & PG_A)
			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;

		/*
		 * Referenced by someone
		 */
		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
			val |= MINCORE_REFERENCED_OTHER;
			vm_page_flag_set(m, PG_REFERENCED);
		}
	} 
	return val;
}

void
pmap_activate(struct proc *p)
{
	pmap_t	pmap;

	pmap = vmspace_pmap(p->p_vmspace);
#if defined(SMP)
	atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
#else
	pmap->pm_active |= 1;
#endif
#if defined(SWTCH_OPTIM_STATS)
	tlb_flush_count++;
#endif
	p->p_thread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pdir);
	load_cr3(p->p_thread->td_pcb->pcb_cr3);
}

vm_offset_t
pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
{

	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
		return addr;
	}

	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
	return addr;
}


#if defined(PMAP_DEBUG)
int
pmap_pid_dump(int pid)
{
	pmap_t pmap;
	struct proc *p;
	int npte = 0;
	int index;
	FOREACH_PROC_IN_SYSTEM(p) {
		if (p->p_pid != pid)
			continue;

		if (p->p_vmspace) {
			int i,j;
			index = 0;
			pmap = vmspace_pmap(p->p_vmspace);
			for(i=0;i<1024;i++) {
				pd_entry_t *pde;
				unsigned *pte;
				unsigned base = i << PDRSHIFT;
				
				pde = &pmap->pm_pdir[i];
				if (pde && pmap_pde_v(pde)) {
					for(j=0;j<1024;j++) {
						unsigned va = base + (j << PAGE_SHIFT);
						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
							if (index) {
								index = 0;
								printf("\n");
							}
							return npte;
						}
						pte = pmap_pte_quick( pmap, va);
						if (pte && pmap_pte_v(pte)) {
							vm_offset_t pa;
							vm_page_t m;
							pa = *(int *)pte;
							m = PHYS_TO_VM_PAGE(pa);
							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
								va, pa, m->hold_count, m->wire_count, m->flags);
							npte++;
							index++;
							if (index >= 2) {
								index = 0;
								printf("\n");
							} else {
								printf(" ");
							}
						}
					}
				}
			}
		}
	}
	return npte;
}
#endif

#if defined(DEBUG)

static void	pads (pmap_t pm);
void		pmap_pvdump (vm_paddr_t pa);

/* print address space of pmap*/
static void
pads(pmap_t pm)
{
	unsigned va, i, j;
	unsigned *ptep;

	if (pm == kernel_pmap)
		return;
	for (i = 0; i < 1024; i++)
		if (pm->pm_pdir[i])
			for (j = 0; j < 1024; j++) {
				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
				if (pm == kernel_pmap && va < KERNBASE)
					continue;
				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
					continue;
				ptep = pmap_pte_quick(pm, va);
				if (pmap_pte_v(ptep))
					printf("%x:%x ", va, *(int *) ptep);
			};

}

void
pmap_pvdump(vm_paddr_t pa)
{
	pv_entry_t pv;
	vm_page_t m;

	printf("pa %08llx", (long long)pa);
	m = PHYS_TO_VM_PAGE(pa);
	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
#ifdef used_to_be
		printf(" -> pmap %p, va %x, flags %x",
		    (void *)pv->pv_pmap, pv->pv_va, pv->pv_flags);
#endif
		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
		pads(pv->pv_pmap);
	}
	printf(" ");
}
#endif