File:  [DragonFly] / src / sys / vfs / udf / udf_vfsops.c
Revision 1.5: download - view: text, annotated - select for diffs
Wed May 19 22:53:06 2004 UTC (10 years, 5 months ago) by dillon
Branches: MAIN
CVS tags: HEAD
Device layer rollup commit.

* cdevsw_add() is now required.  cdevsw_add() and cdevsw_remove() may specify
  a mask/match indicating the range of supported minor numbers.  Multiple
  cdevsw_add()'s using the same major number, but distinctly different
  ranges, may be issued.  All devices that failed to call cdevsw_add() before
  now do.

* cdevsw_remove() now automatically marks all devices within its supported
  range as being destroyed.

* vnode->v_rdev is no longer resolved when the vnode is created.  Instead,
  only v_udev (a newly added field) is resolved.  v_rdev is resolved when
  the vnode is opened and cleared on the last close.

* A great deal of code was making rather dubious assumptions with regards
  to the validity of devices associated with vnodes, primarily due to
  the persistence of a device structure due to being indexed by (major, minor)
  instead of by (cdevsw, major, minor).  In particular, if you run a program
  which connects to a USB device and then you pull the USB device and plug
  it back in, the vnode subsystem will continue to believe that the device
  is open when, in fact, it isn't (because it was destroyed and recreated).

  In particular, note that all the VFS mount procedures now check devices
  via v_udev instead of v_rdev prior to calling VOP_OPEN(), since v_rdev
  is NULL prior to the first open.

* The disk layer's device interaction has been rewritten.  The disk layer
  (i.e. the slice and disklabel management layer) no longer overloads
  its data onto the device structure representing the underlying physical
  disk.  Instead, the disk layer uses the new cdevsw_add() functionality
  to register its own cdevsw using the underlying device's major number,
  and simply does NOT register the underlying device's cdevsw.  No
  confusion is created because the device hash is now based on
  (cdevsw,major,minor) rather then (major,minor).

  NOTE: This also means that underlying raw disk devices may use the entire
  device minor number instead of having to reserve the bits used by the disk
  layer, and also means that can we (theoretically) stack a fully
  disklabel-supported 'disk' on top of any block device.

* The new reference counting scheme prevents this by associating a device
  with a cdevsw and disconnecting the device from its cdevsw when the cdevsw
  is removed.  Additionally, all udev2dev() lookups run through the cdevsw
  mask/match and only successfully find devices still associated with an
  active cdevsw.

* Major work on MFS:  MFS no longer shortcuts vnode and device creation.  It
  now creates a real vnode and a real device and implements real open and
  close VOPs.  Additionally, due to the disk layer changes, MFS is no longer
  limited to 255 mounts.  The new limit is 16 million.  Since MFS creates a
  real device node, mount_mfs will now create a real /dev/mfs<PID> device
  that can be read from userland (e.g. so you can dump an MFS filesystem).

* BUF AND DEVICE STRATEGY changes.  The struct buf contains a b_dev field.
  In order to properly handle stacked devices we now require that the b_dev
  field be initialized before the device strategy routine is called.  This
  required some additional work in various VFS implementations.  To enforce
  this requirement, biodone() now sets b_dev to NODEV.  The new disk layer
  will adjust b_dev before forwarding a request to the actual physical
  device.

* A bug in the ISO CD boot sequence which resulted in a panic has been fixed.

Testing by: lots of people, but David Rhodus found the most aggregious bugs.

    1: /*-
    2:  * Copyright (c) 2001, 2002 Scott Long <scottl@freebsd.org>
    3:  * All rights reserved.
    4:  *
    5:  * Redistribution and use in source and binary forms, with or without
    6:  * modification, are permitted provided that the following conditions
    7:  * are met:
    8:  * 1. Redistributions of source code must retain the above copyright
    9:  *    notice, this list of conditions and the following disclaimer.
   10:  * 2. Redistributions in binary form must reproduce the above copyright
   11:  *    notice, this list of conditions and the following disclaimer in the
   12:  *    documentation and/or other materials provided with the distribution.
   13:  *
   14:  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24:  * SUCH DAMAGE.
   25:  *
   26:  * $FreeBSD: src/sys/fs/udf/udf_vfsops.c,v 1.16 2003/11/05 06:56:08 scottl Exp $
   27:  * $DragonFly: src/sys/vfs/udf/udf_vfsops.c,v 1.5 2004/05/19 22:53:06 dillon Exp $
   28:  */
   29: 
   30: /* udf_vfsops.c */
   31: /* Implement the VFS side of things */
   32: 
   33: /*
   34:  * Ok, here's how it goes.  The UDF specs are pretty clear on how each data
   35:  * structure is made up, but not very clear on how they relate to each other.
   36:  * Here is the skinny... This demostrates a filesystem with one file in the
   37:  * root directory.  Subdirectories are treated just as normal files, but they
   38:  * have File Id Descriptors of their children as their file data.  As for the
   39:  * Anchor Volume Descriptor Pointer, it can exist in two of the following three
   40:  * places: sector 256, sector n (the max sector of the disk), or sector
   41:  * n - 256.  It's a pretty good bet that one will exist at sector 256 though.
   42:  * One caveat is unclosed CD media.  For that, sector 256 cannot be written,
   43:  * so the Anchor Volume Descriptor Pointer can exist at sector 512 until the
   44:  * media is closed.
   45:  *
   46:  *  Sector:
   47:  *     256:
   48:  *       n: Anchor Volume Descriptor Pointer
   49:  * n - 256:	|
   50:  *		|
   51:  *		|-->Main Volume Descriptor Sequence
   52:  *			|	|
   53:  *			|	|
   54:  *			|	|-->Logical Volume Descriptor
   55:  *			|			  |
   56:  *			|-->Partition Descriptor  |
   57:  *				|		  |
   58:  *				|		  |
   59:  *				|-->Fileset Descriptor
   60:  *					|
   61:  *					|
   62:  *					|-->Root Dir File Entry
   63:  *						|
   64:  *						|
   65:  *						|-->File data:
   66:  *						    File Id Descriptor
   67:  *							|
   68:  *							|
   69:  *							|-->File Entry
   70:  *								|
   71:  *								|
   72:  *								|-->File data
   73:  */
   74: 
   75: #include <sys/types.h>
   76: #include <sys/param.h>
   77: #include <sys/systm.h>
   78: #include <sys/uio.h>
   79: #include <sys/buf.h>
   80: #include <sys/conf.h>
   81: #include <sys/dirent.h>
   82: #include <sys/fcntl.h>
   83: #include <sys/module.h>
   84: #include <sys/kernel.h>
   85: #include <sys/malloc.h>
   86: #include <sys/mount.h>
   87: #include <sys/namei.h>
   88: #include <sys/proc.h>
   89: #include <sys/queue.h>
   90: #include <sys/vnode.h>
   91: 
   92: #include <vfs/udf/ecma167-udf.h>
   93: #include <vfs/udf/osta.h>
   94: #include <vfs/udf/udf.h>
   95: #include <vfs/udf/udf_mount.h>
   96: 
   97: MALLOC_DEFINE(M_UDFNODE, "UDF node", "UDF node structure");
   98: MALLOC_DEFINE(M_UDFMOUNT, "UDF mount", "UDF mount structure");
   99: MALLOC_DEFINE(M_UDFFENTRY, "UDF fentry", "UDF file entry structure");
  100: 
  101: static int udf_mount(struct mount *, char *, caddr_t, struct nameidata *,
  102: 		     struct thread *);
  103: static int udf_unmount(struct mount *, int, struct thread *);
  104: static int udf_root(struct mount *, struct vnode **);
  105: static int udf_statfs(struct mount *, struct statfs *, struct thread *);
  106: static int udf_fhtovp(struct mount *, struct fid *, struct vnode **);
  107: static int udf_vptofh(struct vnode *, struct fid *);
  108: 
  109: static int udf_find_partmaps(struct udf_mnt *, struct logvol_desc *);
  110: 
  111: static struct vfsops udf_vfsops = {
  112: 	udf_mount,
  113: 	vfs_stdstart,
  114: 	udf_unmount,
  115: 	udf_root,
  116: 	vfs_stdquotactl,
  117: 	udf_statfs,
  118: 	vfs_stdsync,
  119: 	udf_vget,
  120: 	udf_fhtovp,
  121: 	vfs_stdcheckexp,
  122: 	udf_vptofh,
  123: 	vfs_stdinit,
  124: 	vfs_stduninit,
  125: 	vfs_stdextattrctl,
  126: };
  127: VFS_SET(udf_vfsops, udf, VFCF_READONLY);
  128: 
  129: MODULE_VERSION(udf, 1);
  130: 
  131: static int udf_mountfs(struct vnode *, struct mount *, struct thread *);
  132: 
  133: static int
  134: udf_mount(struct mount *mp, char *path, caddr_t data, struct nameidata *ndp,
  135: 	  struct thread *td)
  136: {
  137: 	struct vnode *devvp;	/* vnode of the mount device */
  138: 	struct udf_args args;
  139: 	struct udf_mnt *imp = 0;
  140: 	size_t size;
  141: 	int error;
  142: 
  143: 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
  144: 		return (EROFS);
  145: 
  146: 	/*
  147: 	 * No root filesystem support.  Probably not a big deal, since the
  148: 	 * bootloader doesn't understand UDF.
  149: 	 */
  150: 	if (mp->mnt_flag & MNT_ROOTFS)
  151: 		return (ENOTSUP);
  152: 
  153: 	if ((error = copyin(data, (caddr_t)&args, sizeof(struct udf_args))))
  154: 		return(error);
  155: 
  156: 	if (mp->mnt_flag & MNT_UPDATE) {
  157: 		imp = VFSTOUDFFS(mp);
  158: 		if (args.fspec == NULL)
  159: 			return(vfs_export(mp, &imp->im_export, &args.export));
  160: 	}
  161: 
  162: 	/* Check that the mount device exists */
  163: 	NDINIT(ndp, NAMEI_LOOKUP, CNP_FOLLOW, UIO_USERSPACE, args.fspec, td);
  164: 	if ((error = namei(ndp)))
  165: 		return(error);
  166: 	NDFREE(ndp, NDF_ONLY_PNBUF);
  167: 	devvp = ndp->ni_vp;
  168: 
  169: 	if (vn_isdisk(devvp, &error) == 0) {
  170: 		vrele(devvp);
  171: 		return(error);
  172: 	}
  173: 
  174: 	/* Check the access rights on the mount device */
  175: 	vn_lock(devvp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
  176: 	error = VOP_ACCESS(devvp, VREAD, td->td_proc->p_ucred, td);
  177: 	if (error)
  178: 		error = suser(td);
  179: 	if (error) {
  180: 		vput(devvp);
  181: 		return(error);
  182: 	}
  183: 	VOP_UNLOCK(devvp, NULL, 0, td);
  184: 
  185: 	if ((error = udf_mountfs(devvp, mp, td))) {
  186: 		vrele(devvp);
  187: 		return(error);
  188: 	}
  189: 
  190: 	imp = VFSTOUDFFS(mp);
  191: 
  192: 	imp->im_flags = args.flags;
  193: 
  194: 	copyinstr(path, mp->mnt_stat.f_mntonname, MNAMELEN - 1, &size);
  195: 	bzero(mp->mnt_stat.f_mntonname + size, MNAMELEN - size);
  196: 	copyinstr(args.fspec, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size);
  197: 	bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
  198: 	udf_statfs(mp, &mp->mnt_stat, td);
  199: 	return(0);
  200: }
  201: 
  202: /*
  203:  * Check the descriptor tag for both the correct id and correct checksum.
  204:  * Return zero if all is good, EINVAL if not.
  205:  */
  206: int
  207: udf_checktag(struct desc_tag *tag, uint16_t id)
  208: {
  209: 	uint8_t *itag;
  210: 	uint8_t i, cksum = 0;
  211: 
  212: 	itag = (uint8_t *)tag;
  213: 
  214: 	if (tag->id != id)
  215: 		return(EINVAL);
  216: 
  217: 	for (i = 0; i < 15; i++)
  218: 		cksum = cksum + itag[i];
  219: 	cksum = cksum - itag[4];
  220: 
  221: 	if (cksum == tag->cksum)
  222: 		return(0);
  223: 
  224: 	return(EINVAL);
  225: }
  226: 
  227: static int
  228: udf_mountfs(struct vnode *devvp, struct mount *mp, struct thread *td) 
  229: {
  230: 	struct buf *bp = NULL;
  231: 	struct anchor_vdp avdp;
  232: 	struct udf_mnt *udfmp = NULL;
  233: 	struct part_desc *pd;
  234: 	struct logvol_desc *lvd;
  235: 	struct fileset_desc *fsd;
  236: 	struct file_entry *root_fentry;
  237: 	dev_t dev;
  238: 	uint32_t sector, size, mvds_start, mvds_end;
  239: 	uint32_t fsd_offset = 0;
  240: 	uint16_t part_num = 0, fsd_part = 0;
  241: 	int error = EINVAL, needclose = 0;
  242: 	int logvol_found = 0, part_found = 0, fsd_found = 0;
  243: 	int bsize;
  244: 
  245: 	/*
  246: 	 * Disallow multiple mounts of the same device. Flush the buffer
  247: 	 * cache for the device.
  248: 	 */
  249: 	if ((error = vfs_mountedon(devvp)))
  250: 		return(error);
  251: 	if (count_udev(devvp) > 0)
  252: 		return(EBUSY);
  253: 	if ((error = vinvalbuf(devvp, V_SAVE, td, 0, 0)))
  254: 		return(error);
  255: 
  256: 	vn_lock(devvp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
  257: 	error = VOP_OPEN(devvp, FREAD, FSCRED, td);
  258: 	VOP_UNLOCK(devvp, NULL, 0, td);
  259: 	if (error)
  260: 		return(error);
  261: 	needclose = 1;
  262: 	dev = devvp->v_rdev;
  263: 
  264: 	udfmp = malloc(sizeof(*udfmp), M_UDFMOUNT, M_WAITOK | M_ZERO);
  265: 
  266: 	mp->mnt_data = (qaddr_t)udfmp;
  267: 	mp->mnt_stat.f_fsid.val[0] = dev2udev(dev);
  268: 	mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum;
  269: 	mp->mnt_maxsymlinklen = 0;
  270: 	mp->mnt_flag |= MNT_LOCAL;
  271: 	udfmp->im_mountp = mp;
  272: 	udfmp->im_dev = dev;
  273: 	udfmp->im_devvp = devvp;
  274: 
  275: 	bsize = 2048;	/* XXX Should probe the media for it's size */
  276: 
  277: 	/* 
  278: 	 * Get the Anchor Volume Descriptor Pointer from sector 256.
  279: 	 * XXX Should also check sector n - 256, n, and 512.
  280: 	 */
  281: 	sector = 256;
  282: 	if ((error = bread(devvp, sector * btodb(bsize), bsize, &bp)) != 0)
  283: 		goto bail;
  284: 	if ((error = udf_checktag((struct desc_tag *)bp->b_data, TAGID_ANCHOR)))
  285: 		goto bail;
  286: 
  287: 	bcopy(bp->b_data, &avdp, sizeof(struct anchor_vdp));
  288: 	brelse(bp);
  289: 	bp = NULL;
  290: 
  291: 	/*
  292: 	 * Extract the Partition Descriptor and Logical Volume Descriptor
  293: 	 * from the Volume Descriptor Sequence.
  294: 	 * XXX Should we care about the partition type right now?
  295: 	 * XXX What about multiple partitions?
  296: 	 */
  297: 	mvds_start = avdp.main_vds_ex.loc;
  298: 	mvds_end = mvds_start + (avdp.main_vds_ex.len - 1) / bsize;
  299: 	for (sector = mvds_start; sector < mvds_end; sector++) {
  300: 		if ((error = bread(devvp, sector * btodb(bsize), bsize,
  301: 				   &bp)) != 0) {
  302: 			printf("Can't read sector %d of VDS\n", sector);
  303: 			goto bail;
  304: 		}
  305: 		lvd = (struct logvol_desc *)bp->b_data;
  306: 		if (!udf_checktag(&lvd->tag, TAGID_LOGVOL)) {
  307: 			udfmp->bsize = lvd->lb_size;
  308: 			udfmp->bmask = udfmp->bsize - 1;
  309: 			udfmp->bshift = ffs(udfmp->bsize) - 1;
  310: 			fsd_part = lvd->_lvd_use.fsd_loc.loc.part_num;
  311: 			fsd_offset = lvd->_lvd_use.fsd_loc.loc.lb_num;
  312: 			if (udf_find_partmaps(udfmp, lvd))
  313: 				break;
  314: 			logvol_found = 1;
  315: 		}
  316: 		pd = (struct part_desc *)bp->b_data;
  317: 		if (!udf_checktag(&pd->tag, TAGID_PARTITION)) {
  318: 			part_found = 1;
  319: 			part_num = pd->part_num;
  320: 			udfmp->part_len = pd->part_len;
  321: 			udfmp->part_start = pd->start_loc;
  322: 		}
  323: 
  324: 		brelse(bp); 
  325: 		bp = NULL;
  326: 		if ((part_found) && (logvol_found))
  327: 			break;
  328: 	}
  329: 
  330: 	if (!part_found || !logvol_found) {
  331: 		error = EINVAL;
  332: 		goto bail;
  333: 	}
  334: 
  335: 	if (fsd_part != part_num) {
  336: 		printf("FSD does not lie within the partition!\n");
  337: 		error = EINVAL;
  338: 		goto bail;
  339: 	}
  340: 
  341: 
  342: 	/*
  343: 	 * Grab the Fileset Descriptor
  344: 	 * Thanks to Chuck McCrobie <mccrobie@cablespeed.com> for pointing
  345: 	 * me in the right direction here.
  346: 	 */
  347: 	sector = udfmp->part_start + fsd_offset;
  348: 	if ((error = RDSECTOR(devvp, sector, udfmp->bsize, &bp)) != 0) {
  349: 		printf("Cannot read sector %d of FSD\n", sector);
  350: 		goto bail;
  351: 	}
  352: 	fsd = (struct fileset_desc *)bp->b_data;
  353: 	if (!udf_checktag(&fsd->tag, TAGID_FSD)) {
  354: 		fsd_found = 1;
  355: 		bcopy(&fsd->rootdir_icb, &udfmp->root_icb,
  356: 		      sizeof(struct long_ad));
  357: 	}
  358: 
  359: 	brelse(bp);
  360: 	bp = NULL;
  361: 
  362: 	if (!fsd_found) {
  363: 		printf("Couldn't find the fsd\n");
  364: 		error = EINVAL;
  365: 		goto bail;
  366: 	}
  367: 
  368: 	/*
  369: 	 * Find the file entry for the root directory.
  370: 	 */
  371: 	sector = udfmp->root_icb.loc.lb_num + udfmp->part_start;
  372: 	size = udfmp->root_icb.len;
  373: 	if ((error = udf_readlblks(udfmp, sector, size, &bp)) != 0) {
  374: 		printf("Cannot read sector %d\n", sector);
  375: 		goto bail;
  376: 	}
  377: 
  378: 	root_fentry = (struct file_entry *)bp->b_data;
  379: 	if ((error = udf_checktag(&root_fentry->tag, TAGID_FENTRY))) {
  380: 		printf("Invalid root file entry!\n");
  381: 		goto bail;
  382: 	}
  383: 
  384: 	brelse(bp);
  385: 	bp = NULL;
  386: 
  387: 	lwkt_token_init(&udfmp->hash_token);
  388: 	udfmp->hashtbl = phashinit(UDF_HASHTBLSIZE, M_UDFMOUNT, &udfmp->hashsz);
  389: 
  390: 	return(0);
  391: 
  392: bail:
  393: 	if (udfmp != NULL)
  394: 		free(udfmp, M_UDFMOUNT);
  395: 	if (bp != NULL)
  396: 		brelse(bp);
  397: 	if (needclose)
  398: 		VOP_CLOSE(devvp, FREAD, td);
  399: 	return(error);
  400: }
  401: 
  402: static int
  403: udf_unmount(struct mount *mp, int mntflags, struct thread *td)
  404: {
  405: 	struct udf_mnt *udfmp;
  406: 	int error, flags = 0;
  407: 
  408: 	udfmp = VFSTOUDFFS(mp);
  409: 
  410: 	if (mntflags & MNT_FORCE)
  411: 		flags |= FORCECLOSE;
  412: 
  413: 	if ((error = vflush(mp, 0, flags)))
  414: 		return (error);
  415: 
  416: 	udfmp->im_devvp->v_rdev->si_mountpoint = NULL;
  417: 	error = VOP_CLOSE(udfmp->im_devvp, FREAD, td);
  418: 	vrele(udfmp->im_devvp);
  419: 
  420: 	if (udfmp->s_table)
  421: 		free(udfmp->s_table, M_UDFMOUNT);
  422: 	if (udfmp->hashtbl)
  423: 		free(udfmp->hashtbl, M_UDFMOUNT);
  424: 	free(udfmp, M_UDFMOUNT);
  425: 
  426: 	mp->mnt_data = (qaddr_t)0;
  427: 	mp->mnt_flag &= ~MNT_LOCAL;
  428: 
  429: 	return (error);
  430: }
  431: 
  432: static int
  433: udf_root(struct mount *mp, struct vnode **vpp)
  434: {
  435: 	struct udf_mnt *udfmp;
  436: 	struct vnode *vp;
  437: 	ino_t id;
  438: 	int error;
  439: 
  440: 	udfmp = VFSTOUDFFS(mp);
  441: 
  442: 	id = udf_getid(&udfmp->root_icb);
  443: 
  444: 	error = udf_vget(mp, id, vpp);
  445: 	if (error)
  446: 		return(error);
  447: 
  448: 	vp = *vpp;
  449: 	vp->v_flag |= VROOT;
  450: 	udfmp->root_vp = vp;
  451: 
  452: 	return(0);
  453: }
  454: 
  455: static int
  456: udf_statfs(struct mount *mp, struct statfs *sbp, struct thread *td)
  457: {
  458: 	struct udf_mnt *udfmp;
  459: 
  460: 	udfmp = VFSTOUDFFS(mp);
  461: 
  462: 	sbp->f_bsize = udfmp->bsize;
  463: 	sbp->f_iosize = udfmp->bsize;
  464: 	sbp->f_blocks = udfmp->part_len;
  465: 	sbp->f_bfree = 0;
  466: 	sbp->f_bavail = 0;
  467: 	sbp->f_files = 0;
  468: 	sbp->f_ffree = 0;
  469: 	if (sbp != &mp->mnt_stat) {
  470: 		sbp->f_type = mp->mnt_vfc->vfc_typenum;
  471: 		bcopy(mp->mnt_stat.f_mntonname, sbp->f_mntonname, MNAMELEN);
  472: 		bcopy(mp->mnt_stat.f_mntfromname, sbp->f_mntfromname, MNAMELEN);
  473: 	}
  474: 
  475: 	return(0);
  476: }
  477: 
  478: int
  479: udf_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
  480: {
  481: 	struct buf *bp;
  482: 	struct vnode *devvp;
  483: 	struct udf_mnt *udfmp;
  484: 	struct thread *td;
  485: 	struct vnode *vp;
  486: 	struct udf_node *unode;
  487: 	struct file_entry *fe;
  488: 	int error, sector, size;
  489: 
  490: 	td = curthread;
  491: 	udfmp = VFSTOUDFFS(mp);
  492: 
  493: 	/* See if we already have this in the cache */
  494: 	if ((error = udf_hashlookup(udfmp, ino, vpp)) != 0)
  495: 		return(error);
  496: 	if (*vpp != NULL) {
  497: 		return(0);
  498: 	}
  499: 
  500: 	/*
  501: 	 * Allocate memory and check the tag id's before grabbing a new
  502: 	 * vnode, since it's hard to roll back if there is a problem.
  503: 	 */
  504: 	unode = malloc(sizeof(*unode), M_UDFNODE, M_WAITOK | M_ZERO);
  505: 
  506: 	/*
  507: 	 * Copy in the file entry.  Per the spec, the size can only be 1 block.
  508: 	 */
  509: 	sector = ino + udfmp->part_start;
  510: 	devvp = udfmp->im_devvp;
  511: 	if ((error = RDSECTOR(devvp, sector, udfmp->bsize, &bp)) != 0) {
  512: 		printf("Cannot read sector %d\n", sector);
  513: 		free(unode, M_UDFNODE);
  514: 		return(error);
  515: 	}
  516: 
  517: 	fe = (struct file_entry *)bp->b_data;
  518: 	if (udf_checktag(&fe->tag, TAGID_FENTRY)) {
  519: 		printf("Invalid file entry!\n");
  520: 		free(unode, M_UDFNODE);
  521: 		brelse(bp);
  522: 		return(ENOMEM);
  523: 	}
  524: 	size = UDF_FENTRY_SIZE + fe->l_ea + fe->l_ad;
  525: 	unode->fentry = malloc(size, M_UDFFENTRY, M_WAITOK | M_ZERO);
  526: 
  527: 	bcopy(bp->b_data, unode->fentry, size);
  528: 	
  529: 	brelse(bp);
  530: 	bp = NULL;
  531: 
  532: 	if ((error = udf_allocv(mp, &vp))) {
  533: 		printf("Error from udf_allocv\n");
  534: 		free(unode, M_UDFNODE);
  535: 		return(error);
  536: 	}
  537: 
  538: 	unode->i_vnode = vp;
  539: 	unode->hash_id = ino;
  540: 	unode->i_devvp = udfmp->im_devvp;
  541: 	unode->i_dev = udfmp->im_dev;
  542: 	unode->udfmp = udfmp;
  543: 	vp->v_data = unode;
  544: 	vref(udfmp->im_devvp);
  545: 	udf_hashins(unode);
  546: 
  547: 	switch (unode->fentry->icbtag.file_type) {
  548: 	default:
  549: 		vp->v_type = VBAD;
  550: 		break;
  551: 	case 4:
  552: 		vp->v_type = VDIR;
  553: 		break;
  554: 	case 5:
  555: 		vp->v_type = VREG;
  556: 		break;
  557: 	case 6:
  558: 		vp->v_type = VBLK;
  559: 		break;
  560: 	case 7:
  561: 		vp->v_type = VCHR;
  562: 		break;
  563: 	case 9:
  564: 		vp->v_type = VFIFO;
  565: 		break;
  566: 	case 10:
  567: 		vp->v_type = VSOCK;
  568: 		break;
  569: 	case 12:
  570: 		vp->v_type = VLNK;
  571: 		break;
  572: 	}
  573: 	*vpp = vp;
  574: 
  575: 	return(0);
  576: }
  577: 
  578: struct ifid {
  579: 	u_short	ifid_len;
  580: 	u_short	ifid_pad;
  581: 	int	ifid_ino;
  582: 	long	ifid_start;
  583: };
  584: 
  585: static int
  586: udf_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
  587: {
  588: 	struct ifid *ifhp;
  589: 	struct vnode *nvp;
  590: 	int error;
  591: 
  592: 	ifhp = (struct ifid *)fhp;
  593: 
  594: 	if ((error = VFS_VGET(mp, ifhp->ifid_ino, &nvp)) != 0) {
  595: 		*vpp = NULLVP;
  596: 		return(error);
  597: 	}
  598: 
  599: 	*vpp = nvp;
  600: 	return(0);
  601: }
  602: 
  603: static int
  604: udf_vptofh (struct vnode *vp, struct fid *fhp)
  605: {
  606: 	struct udf_node *node;
  607: 	struct ifid *ifhp;
  608: 
  609: 	node = VTON(vp);
  610: 	ifhp = (struct ifid *)fhp;
  611: 	ifhp->ifid_len = sizeof(struct ifid);
  612: 	ifhp->ifid_ino = node->hash_id;
  613: 
  614: 	return(0);
  615: }
  616: 
  617: static int
  618: udf_find_partmaps(struct udf_mnt *udfmp, struct logvol_desc *lvd)
  619: {
  620: 	union udf_pmap *pmap;
  621: 	struct part_map_spare *pms;
  622: 	struct regid *pmap_id;
  623: 	struct buf *bp;
  624: 	unsigned char regid_id[UDF_REGID_ID_SIZE + 1];
  625: 	int ptype, psize, error;
  626: 	unsigned int i;
  627: 
  628: 	for (i = 0; i < lvd->n_pm; i++) {
  629: 		pmap = (union udf_pmap *)&lvd->maps[i * UDF_PMAP_SIZE];
  630: 		ptype = pmap->data[0];
  631: 		psize = pmap->data[1];
  632: 		if (((ptype != 1) && (ptype != 2)) ||
  633: 		    ((psize != UDF_PMAP_SIZE) && (psize != 6))) {
  634: 			printf("Invalid partition map found\n");
  635: 			return(1);
  636: 		}
  637: 
  638: 		if (ptype == 1) {
  639: 			/* Type 1 map.  We don't care */
  640: 			continue;
  641: 		}
  642: 
  643: 		/* Type 2 map.  Gotta find out the details */
  644: 		pmap_id = (struct regid *)&pmap->data[4];
  645: 		bzero(&regid_id[0], UDF_REGID_ID_SIZE);
  646: 		bcopy(&pmap_id->id[0], &regid_id[0], UDF_REGID_ID_SIZE);
  647: 
  648: 		if (bcmp(&regid_id[0], "*UDF Sparable Partition",
  649: 		    UDF_REGID_ID_SIZE)) {
  650: 			printf("Unsupported partition map: %s\n", &regid_id[0]);
  651: 			return(1);
  652: 		}
  653: 
  654: 		pms = &pmap->pms;
  655: 		udfmp->s_table = malloc(pms->st_size, M_UDFMOUNT,
  656: 					M_WAITOK | M_ZERO);
  657: 		if (udfmp->s_table == NULL)
  658: 			return(ENOMEM);
  659: 
  660: 		/* Calculate the number of sectors per packet. */
  661: 		/* XXX Logical or physical? */
  662: 		udfmp->p_sectors = pms->packet_len / udfmp->bsize;
  663: 
  664: 		/*
  665: 		 * XXX If reading the first Sparing Table fails, should look
  666: 		 * for another table.
  667: 		 */
  668: 		if ((error = udf_readlblks(udfmp, pms->st_loc[0], pms->st_size,
  669: 		    &bp)) != 0) {
  670: 			if (bp)
  671: 				brelse(bp);
  672: 			printf("Failed to read Sparing Table at sector %d\n",
  673: 			    pms->st_loc[0]);
  674: 			return(error);
  675: 		}
  676: 		bcopy(bp->b_data, udfmp->s_table, pms->st_size);
  677: 		brelse(bp);
  678: 
  679: 		if (udf_checktag(&udfmp->s_table->tag, 0)) {
  680: 			printf("Invalid sparing table found\n");
  681: 			return(EINVAL);
  682: 		}
  683: 
  684: 		/* See how many valid entries there are here.  The list is
  685: 		 * supposed to be sorted. 0xfffffff0 and higher are not valid
  686: 		 */
  687: 		for (i = 0; i < udfmp->s_table->rt_l; i++) {
  688: 			udfmp->s_table_entries = i;
  689: 			if (udfmp->s_table->entries[i].org >= 0xfffffff0)
  690: 				break;
  691: 		}
  692: 	}
  693: 
  694: 	return(0);
  695: }