
HAMMER and PostgreSQL Performance

Jan Lentfer Oct. 2009

(document still being worked upon, intermediate version)

System
The system used for this test was an Intel Atom 330, Foxconn mainboard, 2 GB RAM and 2 Seagate Barracuda ES.2 250GB SATA II
disks. The operating system was installed on the first disk, while all the PostgreSQL files (data) were installed on a 150GB partition on
the 2nd disk. Both disks operated on their own SATA channel.

PostgreSQL
PostgreSQL 8.3 was installed from binaries using the respective packaging system. In postgresql.conf Shared buffers were set to
512MB, Effective Cache Size to 1024MB. Otherwise default values from the Dragonfly BSD installation were used. The same
postgresql.conf file was used on all Operating Systems.

Dragonfly BSD
The version used was 2.4.1. The Kernel was build using “make nativekernel”. The KERNCONF was a copy of GENERIC with these
changes:

--- GENERIC 2009-09-27 22:01:49 +0200
+++ ATOM_SMP 2009-10-11 00:42:24 +0200
@@ -9,10 +9,10 @@
 platform pc32
 machine i386
 machine_arch i386
-cpu I486_CPU
-cpu I586_CPU
+#cpu I486_CPU
+#cpu I586_CPU
 cpu I686_CPU
-ident GENERIC
+ident ATOM_SMP
 maxusers 0

 makeoptions DEBUG=-g #Build kern el with gdb(1) debug symbols
@@ -58,7 +58,7 @@
 # boot fine for non-SMP builds *might* work in SMP mode
 # if you define SMP and leave APIC_IO turned off.
 #

-#options SMP # Symmetric MultiProcessor Kernel
+options SMP # Symmetric MultiProcessor Kernel
 #options APIC_IO # Symmetric (APIC) I/O

 # Debugging for Development

The acpi kernel module was not loaded.

Test Scenario
pgbench was run from an Ubuntu Linux system on the same 100MBit switched network. At first a database of approx. 5GB was
created (-s 400) onto a freshly (newfs’d) created file system to actually involve the file system in the test. At first “SELECT Only” runs
where started against the freshly created database three times in a row to fill up database and file system caches. The result of the
fourth “SELECT Only” run is presented as “initial random seek performance”.
Thereafter three TPC-B tests were run and the average result is presented as “TPC-B” in the chart. Afterwards another “SELECT
Only” test was run, which is shown as “final rand/seek”.
Only for the test on HAMMER with mount options nohistory,noatime “hammer cleanup” was run also and the final “SELECT Only test”
was redone three times (line 3 in the chart).
Options used for pgbench was run with –c 10 and –t 1000, so 10 concurrent sessions with 1000 transactions each, ending up at
10.000 transactions per run.

OS Filesystem Options
initial

rand/seek
TPC-B final rand/seek

1 Dragonfly BSD HAMMER 100 tps 14,8 tps 71 tps
2 Dragonfly BSD HAMMER nohistory,noatime 102 tps 16,3 tps 68 tps
3 Dragonfly BSD HAMMER hammer cleanup 57 / 69 / 69 tps
4 Dragonfly BSD UFS newfs –b 8192 77 tps 36,6 tps 67 tps
5 Dragonfly BSD UFS newfs –b 8192, noatime 87 tps 44,3 tps 78 tps

6 Debian 5.0 XFS
-b size=4096 –s size=4096
noatime,logbsize=128k,logbufs=8

75 tps 27,1 tps 85 tps

7 Debian 5.0 ext3
-b 4096 –f 4096,
noatime,data=writeback

127 tps 64,6 tps 90 tps

When running the tests on Debian I noticed that results of single runs where not consistent so I over thought my test setup and
decided to redo all the tests with the following changes:

• Turn off autovacuum in PostgreSQL
• One run with 10.000 transactions with a concurrency of 10, so 100.000 transactions total (before that was 30.000 total) for initial

random seek and TPC-B test. Final random/seek is still run at 10/10.000.

OS Filesystem Options initial rand/seek TPC-B final rand/seek
Decrease

ratio
1 Dragonfly BSD HAMMER nohistory, noatime 95 tps 16 tps 45 tps 53%
2 Dragonfly BSD UFS newfs -b 8192 –f 8192, noatime 70 tps 36 tps 55 tps 21%
3

Dragonfly BSD HAMMER
nohistory, noatime, sysctl

adoptions *)
94 tps 38 tps 46 tps 51%

4 Debian 5.0 JFS noatime 79 tps 47 tps 61 tps 23%
5 Debian 5.0 ext3 mkfs.ext3 –b 4096, noatime 75 tps 61 tps 93 tps -24%
6 Debian 5.0 XFS mkfs.xfs –b size=4096 114 tps 29 tps 68 tps 40%

*) vfs.getattr_mpsafe=1, vfs.read_mpsafe=1, vfs.hammer.fsync_mode=2

Discussion
My knowledge about the internals of the HAMMER file system is by far too little to make any assumption to what is happening on the
file system. So I will stick to describe what the numbers show:
Random Seek performance for a fresh database is really good compared to UFS and also better than most Linux filesystems, but as
soon as you have a mix of random seeks, random writes and sequential writes (WAL Files) the performance of HAMMER collapses.
What is also remarkable: After the file system has been exposed to some write activity the former fast random seek performance
drops by around 30%. My thought was that this might be due to hefty changes in the btree of HAMMER. That is why “hammer
cleanup” was run on the file system (which rebalances, reblocks and recopies) and “SELECT Only” test was redone three times for the
first chart. As one can see from the chart, the performance did not go back to where it was.
Apparently also the “noatime” mount option does not help HAMMER as much as it does help UFS. Overall you have to say that for
real OLTP work loads UFS operates almost 3 times faster as HAMMER if you use it “out of the box”.

Thanks to input from Matthew Dillon I also redid the tests for HAMMER with vfs.hammer.fsync_mode=2 (synchronous fsync on close if
fsync called prior to close, line 3 in 2nd chart.) to see how much fsync impacts the performance of HAMMER, as fsync is known to be
very expensive on it. By this the TPC-B performance more than doubled to a level comparable to that of UFS, but still the drop in seek
performance after intensive writing is remarkable compared with other file systems.

Conclusion
With the sysctl tuning done as suggested by Matthew Dillon HAMMER could be an alternative for PostgreSQL databases on Dragonfly
assuming that these tuning measures do not interfere with PostgreSQL data integrity (One has too keep in mind that PostgreSQL
heavily relies on fsync for data integrity and recovery. This is a field I still need to investigate.), if there wasn’t this immense
performance degradation. If “hammer cleanup” would come into help you could still think about using it for databases where you have
time windows of low usage but my tests did not show it to do so.

Matthew Dillon suggested to do the tests also with the latest versions of HAMMER and Dragonfly, so be ready for another update of
this document!

